4 research outputs found

    Soft-Switching Techniques of Power Conversion System in Automotive Chargers

    Get PDF
    abstract: This thesis investigates different unidirectional topologies for the on-board charger in an electric vehicle and proposes soft-switching solutions in both the AC/DC and DC/DC stage of the converter with a power rating of 3.3 kW. With an overview on different charger topologies and their applicability with respect to the target specification a soft-switching technique to reduce the switching losses of a single phase boost-type PFC is proposed. This work is followed by a modification to the popular soft-switching topology, the dual active bridge (DAB) converter for application requiring unidirectional power flow. The topology named as the semi-dual active bridge (S-DAB) is obtained by replacing the fully active (four switches) bridge on the load side of a DAB by a semi-active (two switches and two diodes) bridge. The operating principles, waveforms in different intervals and expression for power transfer, which differ significantly from the basic DAB topology, are presented in detail. The zero-voltage switching (ZVS) characteristics and requirements are analyzed in detail and compared to those of DAB. A small-signal model of the new configuration is also derived. The analysis and performance of S-DAB are validated through extensive simulation and experimental results from a hardware prototype. Secondly, a low-loss auxiliary circuit for a power factor correction (PFC) circuit to achieve zero voltage transition is also proposed to improve the efficiency and operating frequency of the converter. The high dynamic energy generated in the switching node during turn-on is diverted by providing a parallel path through an auxiliary inductor and a transistor placed across the main inductor. The paper discusses the operating principles, design, and merits of the proposed scheme with hardware validation on a 3.3 kW/ 500 kHz PFC prototype. Modifications to the proposed zero voltage transition (ZVT) circuit is also investigated by implementing two topological variations. Firstly, an integrated magnetic structure is built combining the main inductor and auxiliary inductor in a single core reducing the total footprint of the circuit board. This improvement also reduces the size of the auxiliary capacitor required in the ZVT operation. The second modification redirects the ZVT energy from the input end to the DC link through additional half-bridge circuit and inductor. The half-bridge operating at constant 50% duty cycle simulates a switching leg of the following DC/DC stage of the converter. A hardware prototype of the above-mentioned PFC and DC/DC stage was developed and the operating principles were verified using the same.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Medium Voltage DC Network Modeling and Analysis with Preliminary Studies for Optimized Converter Configuration Through PSCAD Simulation Environment

    Get PDF
    With the advancement of high capacity power electronics technologies, most notably in high voltage direct current (HVDC) applications, the concept of developing and implementing future transmission networks through a DC backbone presents a realistic and advantageous option over traditional AC approaches. Currently, most consumer electrical equipment requires DC power to function, thus requiring an AC/DC conversion. New forms of distributed generation, such as solar photovoltaic power, produce a direct DC output. Establishing an accessible and direct supply of DC power to serve such resources and loads creates the potential to mitigate losses experienced in the AC/DC conversion process, reduce overall electrical system infrastructure, and lessen the amount of power generated from power plants, as well as other advantages. For the reasons listed, medium voltage DC (MVDC) networks represent a promising, initial platform for interconnecting relatively low voltage generation resources such as photovoltaic panels, serving loads, and supplying other equipment on a common DC bus bar. Future industrial parks, ship power systems, hybrid plug-in vehicles, and energy storage systems are all avenues for future implementation of the concept. This thesis introduces an initial design and simulation model of the MVDC network concept containing renewable generation, power electronic converters, and induction machine loads. Each of the equipment models are developed and modeled in PSCAD and validated analytically. The models of the represented system equipment and components are individually presented and accompanied with their simulated results to demonstrate the validity of the overall model. Finally, the equipment models are assembled together into a meshed system to perform traditional preliminary studies on the overall power system including wind speed adjustments, load energizing, and fault-clearing analysis in order to evaluate aspects of various operational phenomena such as potential overvoltages, system stability issues, and other unexpected occurrences

    High renewable energy penetration hybrid power system for rural and desert areas

    Get PDF
    This thesis proposes innovative ways of designing and controlling a small to medium size islanded or utility grid connected power system consisting of diesel generators, renewable energy sources and battery energy storages such that both fossil fuel usage and size of expensive battery bank can be minimized and the level of penetration of renewable energy can be raised to unprecedented levels. Computer software simulations and experimental results verify the proposed design and control strategies

    Modelling, Design and Implementation of D-Q Control in Single-Phase Grid-Connected Inverters for Photovoltaic Systems used in Domestic Dwellings.

    Get PDF
    This thesis focuses on the single-phase voltage-source inverter for use in photovoltaic (PV) electricity generating systems in both stand-alone and grid-tied applications. In many cases, developments in single-phase PV systems have followed developments in three-phase systems. Time-variant systems are more difficult to control than time-invariant systems. Nevertheless, by using suitable transformation techniques, time-variant systems can often be modelled as time-invariant systems. After the transformation, the control signals that are usually time-variant (often varying sinusoidally in time) become time-invariant at the fundamental frequency, and are hence much easier to deal with. With this approach, synchronous rotating frame control techniques have been previously proposed for high performance three-phase inverter applications. The transformation theory cannot be applied directly in single-phase systems without modification, and the d-q components would not be time-invariant in situations where harmonics, resonances or unbalance is present. Single-phase inverter controller designs based on the use of a synchronous rotating reference frame have been proposed, but such designs do not always perform as well as expected. This thesis aims to improve single-phase voltage-source inverters. The main objective is to address, in terms of cost, efficiency, power management and power quality, the problems found with single-phase designs based on a synchronous rotating frame single-phase inverter controller. Consequently, this thesis focuses on a novel controller approach in order to obtain a more reliable and flexible single-phase inverter. As the first step, this thesis investigates the single-phase inverter switching gate-drive algorithms and develops a form of space-vector pulse-width-modulation (SVPWM) in order to reduce total harmonic distortion. The results of the new SVPWM algorithm demonstrate its superior performance when compared with sinusoidal pulse-width-modulation (SPWM) which is often used with single-phase inverters. The second step, which is further reviewed and presented in this thesis, is the modelling of the single-phase inverter control based on the synchronous rotating frame. A mathematical analysis is conducted to determine the mechanism of the coupling that exists between the voltage phase and amplitude terms, and a new transformation strategy is proposed based on using the voltage phase as a reference at the Park transformation stages, and the current phase as a reference for the current at the transformation stages. The line-frequency components of the feedback signals are transformed to time-invariant components, thus eliminating the ripple and reducing the computational burden associated with the controller stage. Consequently, the inverter feedback controller stage is designed so that the coupling terms are decoupled within the controller itself. The effectiveness of the techniques proposed in this thesis are demonstrated by simulation using the MATLAB/SIMULINK environment. The proposed technique was also investigated through a practical implementation of the control system using a Digital Signal Processor (DSP) and a single-phase inverter. This practical system was tested up to 1 kW only (limited by the available inverter hardware). Nevertheless, the correlation between the simulation and the practical results is high and this gives confidence that the developed mechanism will allow the 2.5kW goal to be achieved. Practical test cases illustrate the effectiveness of the models. In addition, the comparisons between experimental and simulation results permit the system’s behaviour and performance to be accurately evaluated. With the development of the new controller, small-scale single-phase renewable energy systems will become more useful in the field of power quality management through their ability to separately control the phase and amplitude of the output voltage. Consequently, incorporation of this type of generator within the national electrical distribution network, as distributed generators (DG) at low-voltage level, can assist with power quality management at the consumer side of the grid. In addition, such a generator can also operate in stand-alone mode if the grid becomes unavailable. The third step in this thesis investigates small-scale single-phase renewable energy systems operating as decentralized distributed generators within a local network. This operation is achieved by controlling the inverter side using the quantities measured at the common coupling point between the grid and the inverter, without requiring other extensive communications. Thus, the small-scale single-phase renewable energy distributed generator systems will contain only a local controller at each installation.Republic of Iraqi Ministry of Higher Education and Scientific researc
    corecore