25,702 research outputs found

    Study of Repair Protocols for Live Video Streaming Distributed Systems

    Get PDF
    International audience—We study distributed systems for live video streaming. These systems can be of two types: structured and un-structured. In an unstructured system, the diffusion is done opportunistically. The advantage is that it handles churn, that is the arrival and departure of users, which is very high in live streaming systems, in a smooth way. On the opposite, in a structured system, the diffusion of the video is done using explicit diffusion trees. The advantage is that the diffusion is very efficient, but the structure is broken by the churn. In this paper, we propose simple distributed repair protocols to maintain, under churn, the diffusion tree of a structured streaming system. We study these protocols using formal analysis and simulation. In particular, we provide an estimation of the system metrics, bandwidth usage, delay, or number of interruptions of the streaming. Our work shows that structured streaming systems can be efficient and resistant to churn

    Study of Repair Protocols for Live Video Streaming Distributed Systems

    Get PDF
    International audience—We study distributed systems for live video streaming. These systems can be of two types: structured and un-structured. In an unstructured system, the diffusion is done opportunistically. The advantage is that it handles churn, that is the arrival and departure of users, which is very high in live streaming systems, in a smooth way. On the opposite, in a structured system, the diffusion of the video is done using explicit diffusion trees. The advantage is that the diffusion is very efficient, but the structure is broken by the churn. In this paper, we propose simple distributed repair protocols to maintain, under churn, the diffusion tree of a structured streaming system. We study these protocols using formal analysis and simulation. In particular, we provide an estimation of the system metrics, bandwidth usage, delay, or number of interruptions of the streaming. Our work shows that structured streaming systems can be efficient and resistant to churn

    Provider-Controlled Bandwidth Management for HTTP-based Video Delivery

    Get PDF
    Over the past few years, a revolution in video delivery technology has taken place as mobile viewers and over-the-top (OTT) distribution paradigms have significantly changed the landscape of video delivery services. For decades, high quality video was only available in the home via linear television or physical media. Though Web-based services brought video to desktop and laptop computers, the dominance of proprietary delivery protocols and codecs inhibited research efforts. The recent emergence of HTTP adaptive streaming protocols has prompted a re-evaluation of legacy video delivery paradigms and introduced new questions as to the scalability and manageability of OTT video delivery. This dissertation addresses the question of how to enable for content and network service providers the ability to monitor and manage large numbers of HTTP adaptive streaming clients in an OTT environment. Our early work focused on demonstrating the viability of server-side pacing schemes to produce an HTTP-based streaming server. We also investigated the ability of client-side pacing schemes to work with both commodity HTTP servers and our HTTP streaming server. Continuing our client-side pacing research, we developed our own client-side data proxy architecture which was implemented on a variety of mobile devices and operating systems. We used the portable client architecture as a platform for investigating different rate adaptation schemes and algorithms. We then concentrated on evaluating the network impact of multiple adaptive bitrate clients competing for limited network resources, and developing schemes for enforcing fair access to network resources. The main contribution of this dissertation is the definition of segment-level client and network techniques for enforcing class of service (CoS) differentiation between OTT HTTP adaptive streaming clients. We developed a segment-level network proxy architecture which works transparently with adaptive bitrate clients through the use of segment replacement. We also defined a segment-level rate adaptation algorithm which uses download aborts to enforce CoS differentiation across distributed independent clients. The segment-level abstraction more accurately models application-network interactions and highlights the difference between segment-level and packet-level time scales. Our segment-level CoS enforcement techniques provide a foundation for creating scalable managed OTT video delivery services

    In-network quality optimization for adaptive video streaming services

    Get PDF
    HTTP adaptive streaming (HAS) services allow the quality of streaming video to be automatically adapted by the client application in face of network and device dynamics. Due to their advantages compared to traditional techniques, HAS-based protocols are widely used for over-the-top (OTT) video streaming. However, they are yet to be adopted in managed environments, such as ISP networks. A major obstacle is the purely client-driven design of current HAS approaches, which leads to excessive quality oscillations, suboptimal behavior, and the inability to enforce management policies. Moreover, the provider has no control over the quality that is provided, which is essential when offering a managed service. This article tackles these challenges and facilitates the adoption of HAS in managed networks. Specifically, several centralized and distributed algorithms and heuristics are proposed that allow nodes inside the network to steer the HAS client's quality selection process. The algorithms are able to enforce management policies by limiting the set of available qualities for specific clients. Additionally, simulation results show that by coordinating the quality selection process across multiple clients, the proposed algorithms significantly reduce quality oscillations by a factor of five and increase the average delivered video quality by at least 14%

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa

    Design of a middleware for QoS-aware distribution transparent content delivery

    Get PDF
    Developers of distributed multimedia applications face a diversity of multimedia formats, streaming platforms and streaming protocols. Furthermore, support for end-to-end quality-of-service (QoS) is a crucial factor for the development of future distributed multimedia systems. This paper discusses the architecture, design and implementation of a QoS-aware middleware platform for content delivery. The platform supports the development of distributed multimedia applications and can deliver content with QoS guarantees. QoS support is offered by means of an agent infrastructure for QoS negotiation and enforcement. Properties of content are represented using a generic content representation model described using the OMG Meta Object Facility (MOF) model. A content delivery framework manages stream paths for content delivery despite differences in streaming protocols and content encoding. The integration of the QoS support, content representation and content delivery framework results in a QoS-aware middleware that enables representation transparent and location transparent delivery of content

    Multiple-Tree Push-based Overlay Streaming

    Full text link
    Multiple-Tree Overlay Streaming has attracted a great amount of attention from researchers in the past years. Multiple-tree streaming is a promising alternative to single-tree streaming in terms of node dynamics and load balancing, among others, which in turn addresses the perceived video quality by the streaming user on node dynamics or when heterogeneous nodes join the network. This article presents a comprehensive survey of the different aproaches and techniques used in this research area. In this paper we identify node-disjointness as the property most approaches aim to achieve. We also present an alternative technique which does not try to achieve this but does local optimizations aiming global optimizations. Thus, we identify this property as not being absolute necessary for creating robust and heterogeneous multi-tree overlays. We identify two main design goals: robustness and support for heterogeneity, and classify existing approaches into these categories as their main focus
    • 

    corecore