67,310 research outputs found

    Real-time detection of grid bulk transfer traffic

    Get PDF
    The current practice of physical science research has yielded a continuously growing demand for interconnection network bandwidth to support the sharing of large datasets. Academic research networks and internet service providers have provisioned their networks to handle this type of load, which generates prolonged, high-volume traffic between nodes on the network. Maintenance of QoS for all network users demands that the onset of these (Grid bulk) transfers be detected to enable them to be reengineered through resources specifically provisioned to handle this type of traffic. This paper describes a real-time detector that operates at full-line-rate on Gb/s links, operates at high connection rates, and can track the use of ephemeral or non-standard ports

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa

    Unicast UDP Usage Guidelines for Application Designers

    Get PDF
    Publisher PD

    SDN Architecture and Southbound APIs for IPv6 Segment Routing Enabled Wide Area Networks

    Full text link
    The SRv6 architecture (Segment Routing based on IPv6 data plane) is a promising solution to support services like Traffic Engineering, Service Function Chaining and Virtual Private Networks in IPv6 backbones and datacenters. The SRv6 architecture has interesting scalability properties as it reduces the amount of state information that needs to be configured in the nodes to support the network services. In this paper, we describe the advantages of complementing the SRv6 technology with an SDN based approach in backbone networks. We discuss the architecture of a SRv6 enabled network based on Linux nodes. In addition, we present the design and implementation of the Southbound API between the SDN controller and the SRv6 device. We have defined a data-model and four different implementations of the API, respectively based on gRPC, REST, NETCONF and remote Command Line Interface (CLI). Since it is important to support both the development and testing aspects we have realized an Intent based emulation system to build realistic and reproducible experiments. This collection of tools automate most of the configuration aspects relieving the experimenter from a significant effort. Finally, we have realized an evaluation of some performance aspects of our architecture and of the different variants of the Southbound APIs and we have analyzed the effects of the configuration updates in the SRv6 enabled nodes

    Wisent: Robust Downstream Communication and Storage for Computational RFIDs

    Full text link
    Computational RFID (CRFID) devices are emerging platforms that can enable perennial computation and sensing by eliminating the need for batteries. Although much research has been devoted to improving upstream (CRFID to RFID reader) communication rates, the opposite direction has so far been neglected, presumably due to the difficulty of guaranteeing fast and error-free transfer amidst frequent power interruptions of CRFID. With growing interest in the market where CRFIDs are forever-embedded in many structures, it is necessary for this void to be filled. Therefore, we propose Wisent-a robust downstream communication protocol for CRFIDs that operates on top of the legacy UHF RFID communication protocol: EPC C1G2. The novelty of Wisent is its ability to adaptively change the frame length sent by the reader, based on the length throttling mechanism, to minimize the transfer times at varying channel conditions. We present an implementation of Wisent for the WISP 5 and an off-the-shelf RFID reader. Our experiments show that Wisent allows transfer up to 16 times faster than a baseline, non-adaptive shortest frame case, i.e. single word length, at sub-meter distance. As a case study, we show how Wisent enables wireless CRFID reprogramming, demonstrating the world's first wirelessly reprogrammable (software defined) CRFID.Comment: Accepted for Publication to IEEE INFOCOM 201
    corecore