
Extending Globus to support Multicast Transmission

Karl Jeacle and Jon Crowcroft
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
{firstname.lastname}@cl.cam.ac.uk

Abstract

The Globus Toolkit is an open source software toolkit that has become the de-facto stan-
dard for middleware used to build Grid services. Globus XIO is an eXtensible Input/Output
library for Globus. It provides a POSIX-like API to swappable I/O implementations – essen-
tially “I/O plugins” for Globus.

TCP-XM is a modified TCP engine that supports multicast transmission. We have taken
this protocol and wrapped it using XIO to extend the Globus Toolkit to support multicast
transmission.

This paper describes the implementation and operation of our Globus XIO multicast trans-
port driver. It provides an overview of the TCP-XM protocol design, and describes some initial
experimental results.

1 Introduction

The Globus Toolkit is an open source software
toolkit primarily developed by the Globus Al-
liance. It has become the de-facto standard
for middleware used to build Grid services.

The toolkit includes software for security, in-
formation infrastructure, resource manage-
ment, data management, communication,
fault detection, and portability. It is pack-
aged as a set of components that can be used
either independently or together to develop
applications.

At present, almost all bulk data transfer is car-
ried out using the GridFTP protocol [17, 1].
This is based on the conventional FTP pro-
tocol, but includes some extra features to op-
timize bulk data transfer e.g. parallel data
streams. Software that makes use of the pro-
tocol must support the Grid Security Infras-
tructure (GSI) [11] so that user authentication
can take place using Grid certificates.

2 Globus XIO

Globus XIO is an eXtensible Input/Output li-
brary for the Globus Toolkit. It provides a

POSIX-like API to swappable I/O implemen-
tations – essentially “I/O plugins” for Globus
[3].

There are two main goals for Globus XIO:

1. Provide a single user API to all Grid
I/O protocols. There are many different
APIs for many different protocols. XIO
should abstract this complexity for Grid
developers.

2. Minimize the development time for cre-
ating new protocols. Writing with the
XIO framework in mind allows the pro-
tocol designer to maximize the time
spent on protocol code.

This approach is similar to the Streams [18]
concept originally introduced in System V
Unix. A stream is a full-duplex connection be-
tween a user process and a device. It consists
of one or more connected processing modules,
and is analogous to a Shell pipeline, except
that data flows in both directions. A key ad-
vantage of the Streams module approach is the
ability to develop new code within the pro-
tocol stack without requiring changes to the
kernel source.

Figure 1 shows the Globus XIO Architecture.
The User API provides a familiar and con-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/1302936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


venient POSIX-like open/close/read/write in-
terface to programmers. The Framework facil-
itates the XIO system itself, while the Driver
Stack comprises one or more transform drivers
over a single transport driver.

Transform drivers manipulate data buffers
passed to them via the user API and the XIO
framework. Transport drivers are always at
the bottom of the stack and are solely respon-
sible for sending data over the wire.

Example transform driver functionality in-
cludes tasks such as compression, logging and
security. Transport drivers typically imple-
ment protocols such as TCP or UDP.

The configuration and order of drivers in the
stack can be selected at runtime.

Fr
am

ew
or

k

User API

Transform

Transform

Transport

Driver Stack

Figure 1: Globus XIO Architecture

Globus XIO provides an ideal mechanism for
introducing new protocols to Grid users de-
ploying Globus applications. We have built a
modified version of TCP that supports mul-
ticast, and wrapped it using XIO to create a
multicast transport driver for Globus.

3 TCP-XM

TCP-XM is a modified TCP engine that sup-
ports multicast, and runs in userspace over
UDP. It forms the basis for our XIO transport
driver.

This section provides some background ratio-
nale. A more detailed description of the pro-
tocol can be found in [13].

Today, applications use TCP for reliable uni-
cast transfers. It is a mature and well-
understood protocol. By modifying TCP to
deliver data to more than one receiver at a
time, and use multicast when available, an

application can transparently send data re-
liably to multiple recipients. Using existing
TCP mechanisms, the modified protocol en-
sures that data is delivered reliably. Mul-
ticast transmission is attempted for perfor-
mance reasons, but fallback to unicast pre-
serves backwards compatibility and reliability
guarantees, and capitalizes on more than a
decade of experience that TCP implementa-
tions enjoy.

Network protocols are typically implemented
in the kernels of hosts and network devices.
Any proposals that require modifications to
these protocols imply changes to kernel code.
This immediately restricts deployment oppor-
tunities. By limiting changes to code that runs
in userspace on end stations, new protocols
can be developed and tested on live networks.

Our approach is to implement a modified mul-
ticast TCP over UDP. User-space applications
can freely send and receive UDP packets, so a
small shim layer can be introduced to encap-
sulate and decapsulate the TCP-like engine’s
packets into UDP.

While there are performance implications by
running in userspace, the instant deployment
potential of a userspace implementation, cou-
pled with the scalability of multicast, mean
that any such limitations are more than ac-
ceptable.

Therefore, it is possible to build a new end-
to-end protocol, and implement as a userspace
library. Grid applications can avail of this via
a Globus XIO driver.

The key advantage of this approach is that any
Globus application can make use of this new
protocol by simply pushing its XIO driver onto
the stack, while non-Globus Grid applications
can link against an independent userspace li-
brary.

No changes are required in the network (other
than enabling IP multicast).

Because the protocol is not tightly coupled to
the application, should it become adopted for
widespread use, a native implementation can
be built in the kernel to boost performance.

Our implementation of TCP-XM has been
built as an extension to the lwIP TCP/IP
stack [7].



4 Previous work

Reliable multicast has proved to be a difficult
problem to solve, and over the last decade,
much research has been carried out into how
best to approach this problem [10, 14, 15, 19,
5].

Moving TCP out of the kernel into userspace
is not a new idea. A number of projects have
done this in the past, either as a by-product
of a larger project, or as an end in itself [9, 16,
6, 8, 2, 7].

A number of transform and transport drivers
have been built as part of the Globus XIO
system. These include GSI and HTTP trans-
form drivers, and TCP, UDP, File and SABUL
transport drivers. An XIO implementation of
GridFTP is also underway [4].

There are no known existing XIO multicast
transport drivers.

5 XIO driver operation

Two important XIO data structures must be
considered when implementing and making
use of a transport driver:

1. Attribute – in order to set driver-specific
parameters, a custom attribute struc-
ture can be used. For TCP-XM, the list
of n destination addresses is supplied in
this way.

2. Handle – this is returned to the user once
the XIO framework has all the informa-
tion needed to open a new connection. It
is then used to reference the connection
on all future I/O calls. An lwIP netconn

structure will constitute the handle for
multicast.

With these data structures in place, the trans-
port driver is built by mapping XIO’s POSIX
open/close/read/write calls to the appropriate
TCP-XM API calls.

Figure 2 shows how a developer can take ad-
vantage of XIO. First, the XIO stack is ini-
tialized. Next, drivers are pushed onto the
stack (in this example, a TCP-XM transport
driver). Any necessary driver attributes are
created and with a stack in place, a handle for
all subsequent I/O operations is created. The

example finishes with six bytes of data being
written to the network.

// init stack

globus_xio_stack_init(&stk, NULL);

// load drivers onto stack

globus_xio_driver_load("tcpxm", &tdrv);

globus_xio_stack_push_driver(stk,tdrv);

// init attributes

globus_xio_attr_init(&attr);

globus_xio_attr_cntl(attr, tdrv,

GLOBUS_XIO_TCPXM_SET_REMOTE_HOSTS,

hosts, numhosts);

// create handle

globus_xio_handle_create(&handle, stk);

// send data

globus_xio_open(handle, NULL, attr);

globus_xio_write(handle, "hello\n", 6,

1, &nbytes, NULL);

globus_xio_close(handle, NULL);

Figure 2: Sample XIO User Code

6 Internals

6.1 Data structures

The globus l server t structure is used for
XIO servers when TCP-XM is receiving data.
listen conn points to the initial netconn

structure used on server listen, while conn

points to the post-accept structure.

The globus l attr t structure contains TCP-
XM specific protocol information. If the
driver is acting as a server, the server vari-
able points to the relevant globus l server t

structure. It acts as a bridge for the driver be-
tween the creation of a server object and the
assignment of a handle. This is because the
globus l xio tcpxm open() call will use the
value of the attribute server pointer to deter-
mine if the driver is operating as a client or a
server. If the pointer is non-NULL, the user
must have called globus xio server create.
Otherwise, the driver is a client, so a call to
netconn connect() will yield a new handle.

Two client specific variables in globus l attr t



are hosts and numhosts. These are passed
into the driver when acting as a client. hosts
is an array of destination hostnames, while
numhosts is the number of hosts. The
GLOBUS XIO TCPXM SET REMOTE HOSTS com-
mand is used to set these attribute values.

globus l attr t also contains srcport and
dstport variables. These are used by
both clients and servers to set the under-
lying UDP ports used by TCP-XM. The
GLOBUS XIO TCPXM SET UDP PORTS command
is used to set these attribute values.

Finally, the globus l handle t structure is
very simple, containing a single pointer to the
netconn structure that is ultimately used as
the user handle for all I/O calls.

6.2 Function calls

[Note: the glxt prefix is used in this section
as to abbreviate globus l xio tcpxm.]

The XIO framework uses glxt activate() to
active the driver and glxt deactivate() to
later deactivate it. These are followed respec-
tively by glxt init() to tell XIO what func-
tions are present in the driver, and later by
glxt destroy() to deallocate the driver.

Handles are created with glxt handle init()

and destroyed with glxt handle destroy().

glxt attr init() initialises attributes; copies
are made with glxt attr copy() and then,
when no longer of use to the driver, destroyed
with glxt attr destroy(). User-specified
commands such as GLXT SET REMOTE HOSTS

used to set the destination hosts and num-
ber of host, and GLXT SET UDP PORTS to
set the UDP ports used are made via
glxt attr cntl()

If the driver is a server, glxt server init()

initialises the globus l server t structure,
starts the lwIP/TCP-XM threads, and then
binds and listens for new connections. Calling
glxt server destroy() cleans up.

If a client, glxt connect() is used internally
to open a connection and create a new handle.
glxt server accept() is the corresponding
internal function on the server side; it blocks
waiting for an incoming connection.

When a handle has been created, glxt open()

will open a new connection if a client, or block
waiting if a server. Reads are then made via
glxt read(); writes are via glxt write(),
and glxt close() is used to clean up.

7 One-to-many caveats

Two significant caveats with the current XIO
approach have become apparent during the
implementation of the multicast driver.

1. The XIO architecture assumes one-
to-one connections. The XIO User
API therefore requires modifications to
better support one-to-many protocols.
While minimal changes are required at
the API, there may be more significant
changes required within the XIO frame-
work.

2. GSI is one-to-one. Most Globus appli-
cation make use of GSI to authenticate
with peers on connection setup. How-
ever, as it stands, GSI cannot be ex-
pected to authenticate n peers. Some
form of “GSI-M” that supports one-to-
many authentication is required.

The first of the above caveats is a relatively
minor difficulty. Workarounds are possible
due to the flexible nature of the XIO attribute
data structure.

The second caveat, however, is more serious.
From a practical perspective, the multicast
transport driver provides Globus applications
with multicast data transfer capability to mul-
tiple destinations. But as it is not possible to
push a one-to-one transform driver on top of a
one-to-many transport driver, multicast sup-
port currently comes at the expense of secu-
rity.

It is worth noting that security for many-to-
many is often a problem because of late joiners
and early leavers. But unlike many multicast
protocols, TCP-XM has per-receiver state in
the sender. And for bulk transfer from one to
n hosts, it is assumed that session and trans-
port lifetimes are aligned. Because of this,
while building a “GSI-M” transform driver
may require changes to XIO, it is a far less
onerous task than addressing many-to-many
security [12].



8 Initial test results

Note that these experiments were carried
out using a standalone test program linking
against the TCP-XM userspace library, and
not with a Globus application using the XIO
driver. This is primarily due to the currently
limited number of available machines running
a sufficiently recent version of Globus that
supports XIO (initial support was introduced
in 3.2 alpha).

Accounts on machines at eScience Centres
around the UK are available provided suitable
application processes and procedures are fol-
lowed. Table 1 lists the hosts used. Sites in
bold have readily available multicast connec-
tivity (i.e. multicast extends to more than a
single AccessGrid node).

Site Hostname

Belfast gridmon.cc.qub.ac.uk
Cambridge mimiru.escience.cam.ac.uk
Cardiff agents-comsc.grid.cf.ac.uk
Daresbury gridmon.dl.ac.uk
Glasgow cordelia.nesc.gla.ac.uk
Imperial mariner.lesc.doc.ic.ac.uk
Manchester vermont.mvc.mcc.ac.uk
Newcastle ramshope.ncl.ac.uk
Oxford esci1.oucs.ox.ac.uk
Rutherford gridmon.rl.ac.uk
Southampton beacon1.net.soton.ac.uk
UCL sonic.cs.ucl.ac.uk

Table 1: UK eScience Testbed Hosts

Table 2 shows the unicast transfer speeds from
Cambridge to eScience hosts. Not all hosts
from table 1 are listed due to intermittent net-
work and firewall issues.

The speeds vary widely because of both the
network infrastructure in place and the speed
of the local network and CPU at the remote
sites. It is important to note the speed of the
slowest receivers when initiating bulk group
transmissions.

Figure 3 illustrates the performance of the
protocol when transmitting data to the
eScience centres. The unicast plot represents
n individual connections i.e. n application-
level unicast connections, while the multicast
plot shows the effects of a single application-
level TCP-XM connection with n TCP PCBs
underneath.

Site Kilobits/sec

Imperial 25806
Daresbury 14545
Cardiff 13793
Manchester 11428
Southampton 10810
Belfast 5031
Oxford 4159
UCL 2305

Table 2: Speeds from Cambridge

As can be seen, the maximum transmission
speed obtained when using either unicast or
multicast is limited by the speeds of the slow-
est receivers in table 2.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1  2  3  4  5  6  7  8

Tr
an

sf
er

 S
pe

ed
 (k

bp
s)

Number of Hosts

Unicast
Multicast

Figure 3: Speed: Unicast vs Multicast

While the use of multicast via TCP-XM can-
not offer higher transmission speeds across
the network, the benefit of using the proto-
col manifests itself in its efficient use of the
network. While not all remote sites will have
multicast capability, those that do will receive
a significant proportion of their data via single
network-wide multicasts, and not replicated
unicast packets.

9 Conclusion

We have described the work to date on the
TCP-XM protocol, and its implementation as
a Globus XIO transport driver. By imple-
menting this protocol in userspace above UDP,
we are in a position to test the operation of
the protocol in live networks, while delivering
a reliable multicast transport mechanism to
the UK eScience community.



References

[1] W. Allcock, J. Bester, J. Bresnahan,
A. Chervenak, L. Liming, S. Meder, and
S. Tuecke. GridFTP Protocol Specifi-
cation. GGF GridFTP Working Group
Document, September 2002.

[2] Torsten Braun, Christophe Diot, Anna
Hoglander, and Vincent Roca. An Ex-
perimental User Level Implementation of
TCP. Technical report, INRIA RR-2650,
September 1995.

[3] John Bresnahan. Globus XIO. www-
unix.globus.org/developer/xio/, Decem-
ber 2003.

[4] John Bresnahan and Bill Allcock. Globus
XIO and GridFTP for Developers. In
Proceedings of GlobusWorld 2004, San
Francisco, January 2004.

[5] John W. Byers, Michael Luby, Michael
Mitzenmacher, and Ashutosh Rege. A
Digital Fountain Approach to Reliable
Distribution of Bulk Data. In SIG-
COMM, pages 56–67, 1998.

[6] Tom Dunigan and Florence Fowler. A
TCP-over-UDP Test Harness. Technical
report, Oak Ridge National Laboratory,
ORNL/TM-2002/76, May 2002.

[7] Adam Dunkels. Minimal TCP/IP imple-
mentation with proxy support. Techni-
cal report, Swedish Institute of Computer
Science, SICS-T-2001/20-SE, February
2001.

[8] Aled Edwards and Steve Muir. Experi-
ences Implementing a High-Performance
TCP in User-Space. Technical report,
HP Laboratories Bristol, HPL-95-110,
September 1995.

[9] David Ely, Stefan Savage, and David
Wetherall. Alpine: A User-Level Infras-
tructure for Network Protocol Develop-
ment. In Proceedings of USENIX USITS,
2001.

[10] Sally Floyd, Van Jacobson, Ching-
Gung Liu, Steven McCanne, and Lixia
Zhang. A reliable multicast framework
for light-weight sessions and application
level framing. IEEE/ACM Transactions

on Networking, 5(6):784–803, December
1997.

[11] I. Foster, C. Kesselman, G. Tsudik, and
S. Tuecke. A Security Architecture for
Computational Grids. In 5th ACM Con-
ference on Computer and Communica-
tions Security, pages 83–92, 1998.

[12] Thomas Hardjono and Gene Tsudik. IP
Multicast Security: Issues and Direc-
tions. Annales de Telecom, 2000.

[13] Karl Jeacle and Jon Crowcroft. Reliable
high-speed Grid data delivery using IP
multicast. In Proceedings of All Hands
Meeting 2003, Nottingham, UK, Septem-
ber 2003.

[14] John C. Lin and Sanjoy Paul. RMTP: A
Reliable Multicast Transport Protocol. In
INFOCOM, pages 1414–1424, San Fran-
cisco, CA, March 1996.

[15] Steven McCanne, Van Jacobson, and
Martin Vetterli. Receiver-driven Layered
Multicast. In ACM SIGCOMM, volume
26,4, pages 117–130, New York, August
1996. ACM Press.

[16] Ian Pratt and Keir Fraser. Arsenic: A
User-Accessible Gigabit Ethernet Inter-
face. In Proceedings of IEEE INFOCOM,
2001.

[17] The Globus Project. GridFTP: Univer-
sal Data Transfer for the Grid. Globus
Project White Paper, September 2000.

[18] Dennis M. Ritchie. A Stream Input-
Output System. AT&T Bell Laborato-
ries Technical Journal, 63(8):1897–1910,
1984.

[19] Luigi Rizzo and Lorenzo Vicisano. A Re-
liable Multicast data Distribution Pro-
tocol based on software FEC tech-
niques. In The Fourth IEEE Workshop on
the Architecture and Implementation of
High Performance Communication Sys-
tems (HPCS’97), Sani Beach, Chalkidiki,
Greece, June 1997.


	Abstract
	Introduction
	Globus XIO
	TCP-XM
	Previous Work
	XIO driver operation
	Internals
	Data structures
	Function calls

	One-to-many caveats
	Initial test results
	Conclusion
	References

