240,080 research outputs found

    Mechano-transduction: from molecules to tissues.

    Get PDF
    External forces play complex roles in cell organization, fate, and homeostasis. Changes in these forces, or how cells respond to them, can result in abnormal embryonic development and diseases in adults. How cells sense and respond to these mechanical stimuli requires an understanding of the biophysical principles that underlie changes in protein conformation and result in alterations in the organization and function of cells and tissues. Here, we discuss mechano-transduction as it applies to protein conformation, cellular organization, and multi-cell (tissue) function

    Mobility Measurements Probe Conformational Changes in Membrane Proteins due to Tension

    Full text link
    The function of membrane-embedded proteins such as ion channels depends crucially on their conformation. We demonstrate how conformational changes in asymmetric membrane proteins may be inferred from measurements of their diffusion. Such proteins cause local deformations in the membrane, which induce an extra hydrodynamic drag on the protein. Using membrane tension to control the magnitude of the deformations and hence the drag, measurements of diffusivity can be used to infer--- via an elastic model of the protein--- how conformation is changed by tension. Motivated by recent experimental results [Quemeneur et al., Proc. Natl. Acad. Sci. USA, 111 5083 (2014)] we focus on KvAP, a voltage-gated potassium channel. The conformation of KvAP is found to change considerably due to tension, with its `walls', where the protein meets the membrane, undergoing significant angular strains. The torsional stiffness is determined to be 26.8 kT at room temperature. This has implications for both the structure and function of such proteins in the environment of a tension-bearing membrane.Comment: Manuscript: 4 pages, 4 figures. Supplementary Material: 8 pages, 1 figur

    Conformational Dependence of a Protein Kinase Phosphate Transfer Reaction

    Full text link
    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase (PKA) are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In the TC, we calculate that the reactants and products are nearly isoenergetic with a 0.2 eV barrier; while phosphate transfer is unfavorable by over 1.2 eV in the RC, with an even higher barrier. With the protein in the TC, the motions involved in reaction are small, with only PÎł_\gamma and the catalytic proton moving more than 0.5 \AA. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an \AA in the catalytic site.Comment: revtex4, 7 pages, 4 figures, to be submitted to Scienc

    CLP-based protein fragment assembly

    Full text link
    The paper investigates a novel approach, based on Constraint Logic Programming (CLP), to predict the 3D conformation of a protein via fragments assembly. The fragments are extracted by a preprocessor-also developed for this work- from a database of known protein structures that clusters and classifies the fragments according to similarity and frequency. The problem of assembling fragments into a complete conformation is mapped to a constraint solving problem and solved using CLP. The constraint-based model uses a medium discretization degree Ca-side chain centroid protein model that offers efficiency and a good approximation for space filling. The approach adapts existing energy models to the protein representation used and applies a large neighboring search strategy. The results shows the feasibility and efficiency of the method. The declarative nature of the solution allows to include future extensions, e.g., different size fragments for better accuracy.Comment: special issue dedicated to ICLP 201
    • …
    corecore