The paper investigates a novel approach, based on Constraint Logic
Programming (CLP), to predict the 3D conformation of a protein via fragments
assembly. The fragments are extracted by a preprocessor-also developed for this
work- from a database of known protein structures that clusters and classifies
the fragments according to similarity and frequency. The problem of assembling
fragments into a complete conformation is mapped to a constraint solving
problem and solved using CLP. The constraint-based model uses a medium
discretization degree Ca-side chain centroid protein model that offers
efficiency and a good approximation for space filling. The approach adapts
existing energy models to the protein representation used and applies a large
neighboring search strategy. The results shows the feasibility and efficiency
of the method. The declarative nature of the solution allows to include future
extensions, e.g., different size fragments for better accuracy.Comment: special issue dedicated to ICLP 201