1,346 research outputs found

    Cooperative Particle Swarm Optimization for Combinatorial Problems

    Get PDF
    A particularly successful line of research for numerical optimization is the well-known computational paradigm particle swarm optimization (PSO). In the PSO framework, candidate solutions are represented as particles that have a position and a velocity in a multidimensional search space. The direct representation of a candidate solution as a point that flies through hyperspace (i.e., Rn) seems to strongly predispose the PSO toward continuous optimization. However, while some attempts have been made towards developing PSO algorithms for combinatorial problems, these techniques usually encode candidate solutions as permutations instead of points in search space and rely on additional local search algorithms. In this dissertation, I present extensions to PSO that by, incorporating a cooperative strategy, allow the PSO to solve combinatorial problems. The central hypothesis is that by allowing a set of particles, rather than one single particle, to represent a candidate solution, combinatorial problems can be solved by collectively constructing solutions. The cooperative strategy partitions the problem into components where each component is optimized by an individual particle. Particles move in continuous space and communicate through a feedback mechanism. This feedback mechanism guides them in the assessment of their individual contribution to the overall solution. Three new PSO-based algorithms are proposed. Shared-space CCPSO and multispace CCPSO provide two new cooperative strategies to split the combinatorial problem, and both models are tested on proven NP-hard problems. Multimodal CCPSO extends these combinatorial PSO algorithms to efficiently sample the search space in problems with multiple global optima. Shared-space CCPSO was evaluated on an abductive problem-solving task: the construction of parsimonious set of independent hypothesis in diagnostic problems with direct causal links between disorders and manifestations. Multi-space CCPSO was used to solve a protein structure prediction subproblem, sidechain packing. Both models are evaluated against the provable optimal solutions and results show that both proposed PSO algorithms are able to find optimal or near-optimal solutions. The exploratory ability of multimodal CCPSO is assessed by evaluating both the quality and diversity of the solutions obtained in a protein sequence design problem, a highly multimodal problem. These results provide evidence that extended PSO algorithms are capable of dealing with combinatorial problems without having to hybridize the PSO with other local search techniques or sacrifice the concept of particles moving throughout a continuous search space

    Inference of Genetic Regulatory Networks with Recurrent Neural Network Models using Particle Swarm Optimization

    Get PDF
    Genetic regulatory network inference is critically important for revealing fundamental cellular processes, investigating gene functions, and understanding their relations. The availability of time series gene expression data makes it possible to investigate the gene activities of whole genomes, rather than those of only a pair of genes or among several genes. However, current computational methods do not sufficiently consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO) approach to infer genetic regulatory networks from time series gene expression data. Under this framework, gene interaction is explained through a connection weight matrix. Based on the fact that the measured time points are limited and the assumption that the genetic networks are usually sparsely connected, we present a PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine the network parameters. Our approach has been applied to both synthetic and real data sets. The results demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of the gene expression time series and revealing potential regulatory interactions between genes

    Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach

    Get PDF
    "(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Gold immunochromatographic strip assay provides a rapid, simple, single-copy and on-site way to detect the presence or absence of the target analyte. This paper aims to develop a method for accurately segmenting the test line and control line of the gold immunochromatographic strip (GICS) image for quantitatively determining the trace concentrations in the specimen, which can lead to more functional information than the traditional qualitative or semi-quantitative strip assay. The canny operator as well as the mathematical morphology method is used to detect and extract the GICS reading-window. Then, the test line and control line of the GICS reading-window are segmented by the cellular neural network (CNN) algorithm, where the template parameters of the CNN are designed by the switching particle swarm optimization (SPSO) algorithm for improving the performance of the CNN. It is shown that the SPSO-based CNN offers a robust method for accurately segmenting the test and control lines, and therefore serves as a novel image methodology for the interpretation of GICS. Furthermore, quantitative comparison is carried out among four algorithms in terms of the peak signal-to-noise ratio. It is concluded that the proposed CNN algorithm gives higher accuracy and the CNN is capable of parallelism and analog very-large-scale integration implementation within a remarkably efficient time

    Gene Regulatory Networks Inference with Recurrent Neural Network Models

    Get PDF
    Large-scale time series gene expression data generated from DNA microarray experiments provide us a new means to reveal fundamental cellular processes, investigate functions of genes, and understand their relations and interactions. To infer gene regulatory networks from these data with effective computational tools has attracted intensive efforts from artificial intelligence and machine learning. Here, we use a recurrent neural network (RNN), trained with particle swarm optimization (PSO), to investigate the behaviors of regulatory networks. The experimental results, on a synthetic data set and a real data set, show that the proposed model and algorithm can effectively capture the dynamics of the gene expression time series and are capable of revealing regulatory interactions between genes

    Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence

    Get PDF
    • …
    corecore