10 research outputs found

    Analysis of restoration and protection in optical network with simulation framework

    Get PDF
    Abstract: Survivability is one of the most important requirements of optical networks. As optical networks are prone to component failures and carry a large volume of traffic, maintaining a high level of service availability is an important issue. In this paper, existing restoration methods proposed for optical network are critically analysed. A Net2Plan tool is presented, its features and how effectively a problem can be framed and existing and modified algorithms can be implemented on resilience simulation

    A New Survivable Mapping Problem in IP-over-WDM Networks

    Get PDF
    We introduce a new version of the widely studied survivable mapping problem in IP-over-WDM networks. The new problem allows augmenting the given logical topology and is described as follows: given a physical topology and a logical topology, compute a survivable logical topology that contains the given logical topology such that the minimal survivable mapping cost for the result logical topology is minimized. The problem is significant for two reasons: 1) If there does not exist a survivable mapping for the given logical topology, we can add logical links to the given logical topology to make it survivable; 2) Even if a survivable mapping for the given logical topology can be found, it is still possible to reduce the minimal survivable mapping cost by adding logical links selectively. We first prove the existence of a solution to the problem, then provide a straightforward Integer Linear Program (ILP) formulation for the problem. Moreover, we present a theoretical result that leads to a simple NP-hardness proof of the problem and an improved ILP formulation. Simulation results demonstrate the significance of both the new survivable mapping problem and the theoretical result

    Priority based dynamic lightpath allocation in WDM networks.

    Get PDF
    Internet development generates new bandwidth requirement every day. Optical networks employing WDM (wavelength division multiplexing) technology can provide high capacity, low error rate and low delay. They are considered to be future backbone networks. Since WDM networks usually operate in a high speed, network failure (such as fiber cut), even for a short term, can cause huge data lost. So design robust WDM network to survive faults is a crucial issue in WDM networks. This thesis introduces a new and efficient MILP (Mixed Integer Linear Programming) formulation to solve dynamic lightpath allocation problem in survivable WDM networks, using both shared and dedicated path protection. The formulation defines multiple levels of service to further improve resource utilization. Dijkstra\u27s shortest path algorithm is used to pre-compute up to 3 alternative routes between any node pair, so as to limit the lightpath routing problem within up to 3 routes instead of whole network-wide. This way can shorten the solution time of MILP formulation; make it acceptable for practical size network. Extensive experiments carried out on a number of networks show this new MILP formulation can improve performance and is feasible for real-life network. Source: Masters Abstracts International, Volume: 43-01, page: 0249. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Multi-ring SDH network design over optical mesh networks

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and Sciences of Bilkent University, 2002.Thesis (Master's) -- Bilkent University, 2002.Includes bibliographical references leaves 84-87.The evolution of networks in telecommunications has brought on the importance of design techniques to obtain survivable and cost-effective transportation networks. In this thesis, we study Synchronous Digital Hierarchy (SDH) ring design problem with an interconnected multi-ring architecture overlaid over an optical mesh network. We decouple the problem into two sub-problems: the first problem is the SDH ring selection, and the second problem is the mapping of these rings onto the physical mesh topology. In this structure, the logical topology consists of SDH Add/Drop Multiplexers (ADMs) and Digital Cross-Connects (DXCs), and the physical topology consists of Optical Cross-Connects (OXCs). The ring selection problem is to choose the rings that give minimum inter-ring traffic in the network. Since inter-ring traffic increases the network cost and complexity, we aim to minimize the inter-ring traffic. We propose a greedy heuristic algorithm for this problem that finds a solution subject to the constraint that the number of nodes on each ring is limited. Numerical results on the ring design problem are presented for different topologies. Once the logical topology is obtained, resilient mapping of SDH rings onto the mesh physical topology is formulated as a Mixed Integer Linear Programming (MILP) problem. In order to guarantee proper operation of SDH ring protection against all single failures, each link on an SDH ring must be mapped onto a lightpath which is link and node disjoint from all other lightpaths comprising the same ring. The objective of this mapping is to minimize the total fiber cost in the network. We also apply a post-processing algorithm to eliminate redundant rings. The postprocessing algorithm is very useful to reduce the cost. We evaluate the performance of our design algorithm for different networks.Tan, Tuba AkıncılarM.S

    Survivability issues in WDM optical networks

    Get PDF
    WDM optical networks make it possible for the bandwidth of transport networks to reach a level on which any failures would cause tremendous data loss and affect a lot of users. Thus, survivability issues of WDM optical networks have attracted a lot of research work. Within the scope of this dissertation, two categories of problems are studied, one is survivable mapping from IP topology to WDM topology, the other is p-cycle protection schemes in WDM networks.;Survivable mapping problem can be described as routing IP links on the WDM topology such that the IP topology stays connected under any single link failure in the WDM topology. This problem has been proved to be NP-complete [1]. At first, this dissertation provides a heuristic algorithm to compute approximated solutions for input IP/WDM topologies as an approach to ease the hardness of it. Then, it examines the problem with a different view, to augment the IP topology so that a survivable mapping can be easily computed. This new perspective leads to an extended survivable mapping problem that is originally proposed and analyzed in this dissertation. In addition, this dissertation also presents some interesting open problems for the survivable mapping problem as future work.;Various protection schemes in WDM networks have been explored. This dissertation focuses on methods based on the p-cycle technology. p-Cycle protection inherits the merit of fast restoration from the link-based protection technology while yielding higher efficiency on spare capacity usage [2]. In this dissertation, we first propose an efficient heuristic algorithm that generates a small subset of candidate cycles that guarantee 100% restorability and help to achieve an efficient design. Then, we adapt p-cycle design to accommodate the protection of the failure of a shared risk link group (SRLG). At last, we discuss the problem of establishing survivable connections for dynamic traffic demands using flow p-cycle

    Survivability in layered networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 195-204).In layered networks, a single failure at the lower (physical) layer may cause multiple failures at the upper (logical) layer. As a result, traditional schemes that protect against single failures may not be effective in layered networks. This thesis studies the problem of maximizing network survivability in the layered setting, with a focus on optimizing the embedding of the logical network onto the physical network. In the first part of the thesis, we start with an investigation of the fundamental properties of layered networks, and show that basic network connectivity structures, such as cuts, paths and spanning trees, exhibit fundamentally different characteristics from their single-layer counterparts. This leads to our development of a new crosslayer survivability metric that properly quantifies the resilience of the layered network against physical failures. Using this new metric, we design algorithms to embed the logical network onto the physical network based on multi-commodity flows, to maximize the cross-layer survivability. In the second part of the thesis, we extend our model to a random failure setting and study the cross-layer reliability of the networks, defined to be the probability that the upper layer network stays connected under the random failure events. We generalize the classical polynomial expression for network reliability to the layered setting. Using Monte-Carlo techniques, we develop efficient algorithms to compute an approximate polynomial expression for reliability, as a function of the link failure probability. The construction of the polynomial eliminates the need to resample when the cross-layer reliability under different link failure probabilities is assessed. Furthermore, the polynomial expression provides important insight into the connection between the link failure probability, the cross-layer reliability and the structure of a layered network. We show that in general the optimal embedding depends on the link failure probability, and characterize the properties of embeddings that maximize the reliability under different failure probability regimes. Based on these results, we propose new iterative approaches to improve the reliability of the layered networks. We demonstrate via extensive simulations that these new approaches result in embeddings with significantly higher reliability than existing algorithms.by Kayi Lee.Ph.D

    Pour un mécanisme de protection différenciée unique contre la gestion ainsi que les pannes : DiffServ*

    Get PDF
    L'avènement de l'Internet multiservice met fin à l'ère du réseautage de nature meilleur effort. Cette nouvelle caractéristique est très souhaitable et prometteuse sur plusieurs plans mais elle reste sujette à la capacité du réseau de protéger chaque catégorie de trafic selon sa priorité et ses exigences en qualité de service. Quand le réseau est déployé sur une infrastructure optique, une des préoccupations des plus importantes est sa capacité de survie et le maintien d'un service adéquat à toutes les applications suite à une panne physique. Nous savons qu'une simple coupure de fibre provoque des pertes énormes en capacité de transmission et si laissée sans surveillance, elle peut causer des dégradations majeures dans la qualité de service perçue par les usagers du réseau. Bien qu'il existe déjà des mécanismes de protection physique qui sont conçus spécifiquement pour remédier à de telles situations, ces options sont généralement très coûteuses et difficilement adaptable aux besoins variés de chaque classe de trafic d'un réseau multiserviceNous proposons alors un modèle innovateur de protection différenciée du trafic, DiffServ*, qui permet de répondre aux exigences particulières en qualité de service et de protection de chacune des classes de trafic et qui introduit une robustesse accrue et des économies importantes en matière d'utilisation de ressources d'un réseau IP/WDM. DiffServ* se distingue par l'utilisation combinée de l'architecture des services différenciées à la couche logique d'un réseau et de la technique d'agrégation de liens ou canaux disjoints à sa couche physiqueNotre modèle de protection différenciée du trafic en cas de pannes a été soumis à l'épreuve, nous avons utilisé la simulation pour étudier sa performance et nous l'avons comparé à un modèle de protection physique homologue, DiffProtect. Les résultats montrent que DiffServ* permet en moyenne de garantir une meilleure protection que DiffProtect en cas de pannes simples et multiples. DiffProtect n'est plus performant que dans certaines situations de pannes et de trafic très particulières. Une évaluation subséquente de la fiabilité d'un réseau qui utilise DiffServ*, une étude de coût de son déploiement et une étude de cas qui cible les réseaux MPLS-DiffServ TE confirment davantage la supériorité de DiffServ* par rapport à tout autre option de protection différenciée envisageableNous rappelons que DiffServ* se base sur les techniques de différenciation de service de la couche logique pour protéger le trafic en cas de pannes de composantes optiques. Ceci est inédit puisque ces mêmes techniques sont originalement conçues que pour protéger le trafic en cas de congestion dans la couche logique. Alors pour démontrer définitivement que DiffServ* est réalisable et fonctionnel nous réalisons une expérience de déploiement pratique de DiffServ* en laboratoire à l'aide d'équipements de communication réel. Malgré les divergences techniques entre la modélisation théorique de DiffServ* et de son implémentation, DiffServ* est démontré performant, fiable, économique et réalisable en pratiqueNous clôturons ce projet par une planification de déploiement ; cette dernière permet de généraliser le déploiement de DiffServ* à toute topologie IP/WDM et d'en dimensionner la couche logique. Notre procédure approche les situations qui requièrent la fiabilité spécifique de DiffProtect en offrant un modèle d'optimisation complet sur le déploiement de la protection MixProtect multicouche qui utilise DiffServ* et DiffProtect dans le même résea

    Protection Interoperability for WDM Optical Networks

    No full text
    The failure of a single optical link or node in a Wavelength Division Multiplexing (WDM) network may cause the simultaneous failure of several optical channels. In some cases, this simultaneity may make it impossible for the higher level (SONET or IP) to restore service. This occurs when the higher level is not aware of the internal details of network design at the WDM level. We call this phenomenon ``failure propagatio
    corecore