79 research outputs found

    Privacy Preserving Cryptographic Protocols for Secure Heterogeneous Networks

    Get PDF
    DisertačnĂ­ prĂĄce se zabĂœvĂĄ kryptografickĂœmi protokoly poskytujĂ­cĂ­ ochranu soukromĂ­, kterĂ© jsou určeny pro zabezpečenĂ­ komunikačnĂ­ch a informačnĂ­ch systĂ©mĆŻ tvoƙícĂ­ch heterogennĂ­ sĂ­tě. PrĂĄce se zaměƙuje pƙedevĆĄĂ­m na moĆŸnosti vyuĆŸitĂ­ nekonvenčnĂ­ch kryptografickĂœch prostƙedkĆŻ, kterĂ© poskytujĂ­ rozơíƙenĂ© bezpečnostnĂ­ poĆŸadavky, jako je napƙíklad ochrana soukromĂ­ uĆŸivatelĆŻ komunikačnĂ­ho systĂ©mu. V prĂĄci je stanovena vĂœpočetnĂ­ nĂĄročnost kryptografickĂœch a matematickĂœch primitiv na rĆŻznĂœch zaƙízenĂ­ch, kterĂ© se podĂ­lĂ­ na zabezpečenĂ­ heterogennĂ­ sĂ­tě. HlavnĂ­ cĂ­le prĂĄce se zaměƙujĂ­ na nĂĄvrh pokročilĂœch kryptografickĂœch protokolĆŻ poskytujĂ­cĂ­ch ochranu soukromĂ­. V prĂĄci jsou navrĆŸeny celkově tƙi protokoly, kterĂ© vyuĆŸĂ­vajĂ­ skupinovĂœch podpisĆŻ zaloĆŸenĂœch na bilineĂĄrnĂ­m pĂĄrovĂĄnĂ­ pro zajiĆĄtěnĂ­ ochrany soukromĂ­ uĆŸivatelĆŻ. Tyto navrĆŸenĂ© protokoly zajiĆĄĆ„ujĂ­ ochranu soukromĂ­ a nepopiratelnost po celou dobu datovĂ© komunikace spolu s autentizacĂ­ a integritou pƙenĂĄĆĄenĂœch zprĂĄv. Pro navĂœĆĄenĂ­ vĂœkonnosti navrĆŸenĂœch protokolĆŻ je vyuĆŸito optimalizačnĂ­ch technik, napƙ. dĂĄvkovĂ©ho ověƙovĂĄnĂ­, tak aby protokoly byly praktickĂ© i pro heterogennĂ­ sĂ­tě.The dissertation thesis deals with privacy-preserving cryptographic protocols for secure communication and information systems forming heterogeneous networks. The thesis focuses on the possibilities of using non-conventional cryptographic primitives that provide enhanced security features, such as the protection of user privacy in communication systems. In the dissertation, the performance of cryptographic and mathematic primitives on various devices that participate in the security of heterogeneous networks is evaluated. The main objectives of the thesis focus on the design of advanced privacy-preserving cryptographic protocols. There are three designed protocols which use pairing-based group signatures to ensure user privacy. These proposals ensure the protection of user privacy together with the authentication, integrity and non-repudiation of transmitted messages during communication. The protocols employ the optimization techniques such as batch verification to increase their performance and become more practical in heterogeneous networks.

    A Comprehensive Bibliometric Analysis on Social Network Anonymization: Current Approaches and Future Directions

    Full text link
    In recent decades, social network anonymization has become a crucial research field due to its pivotal role in preserving users' privacy. However, the high diversity of approaches introduced in relevant studies poses a challenge to gaining a profound understanding of the field. In response to this, the current study presents an exhaustive and well-structured bibliometric analysis of the social network anonymization field. To begin our research, related studies from the period of 2007-2022 were collected from the Scopus Database then pre-processed. Following this, the VOSviewer was used to visualize the network of authors' keywords. Subsequently, extensive statistical and network analyses were performed to identify the most prominent keywords and trending topics. Additionally, the application of co-word analysis through SciMAT and the Alluvial diagram allowed us to explore the themes of social network anonymization and scrutinize their evolution over time. These analyses culminated in an innovative taxonomy of the existing approaches and anticipation of potential trends in this domain. To the best of our knowledge, this is the first bibliometric analysis in the social network anonymization field, which offers a deeper understanding of the current state and an insightful roadmap for future research in this domain.Comment: 73 pages, 28 figure

    Protocol for a Systematic Literature Review on Security-related Research in Ubiquitous Computing

    Get PDF
    Context: This protocol is as a supplementary document to our review paper that investigates security-related challenges and solutions that have occurred during the past decade (from January 2003 to December 2013). Objectives: The objective of this systematic review is to identify security-related challenges, security goals and defenses in ubiquitous computing by answering to three main research questions. First, demographic data and trends will be given by analyzing where, when and by whom the research has been carried out. Second, we will identify security goals that occur in ubiquitous computing, along with attacks, vulnerabilities and threats that have motivated the research. Finally, we will examine the differences in addressing security in ubiquitous computing with those in traditional distributed systems. Method: In order to provide an overview of security-related challenges, goals and solutions proposed in the literature, we will use a systematic literature review (SLR). This protocol describes the steps which are to be taken in order to identify papers relevant to the objective of our review. The first phase of the method includes planning, in which we define the scope of our review by identifying the main research questions, search procedure, as well as inclusion and exclusion criteria. Data extracted from the relevant papers are to be used in the second phase of the method, data synthesis, to answer our research questions. The review will end by reporting on the results. Results and conclusions: The expected results of the review should provide an overview of attacks, vulnerabilities and threats that occur in ubiquitous computing and that have motivated the research in the last decade. Moreover, the review will indicate which security goals are gaining on their significance in the era of ubiquitous computing and provide a categorization of the security-related countermeasures, mechanisms and techniques found in the literature. (authors' abstract)Series: Working Papers on Information Systems, Information Business and Operation

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones

    Developing Advanced Privacy Protection Mechanisms for Connected Automotive User Experiences

    Full text link
    The transportation industry is experiencing an unprecedented revolution. This revolution is being led by the rapid development of connected and automated vehicle (CAV) technologies together with cloud-based mobility services featured with huge amount of data being generated, collected,and utilized. This big data trend provides not only business opportunities but also challenges. One of the challenges is data privacy which is inherently unavoidable due to the information sharing nature of such mobility services and the advancement in data analytics. In this thesis, privacy issues and corresponding countermeasure that related to connected vehicle landscape are comprehensively studied. First of all, an overview of the landscape of emerging mobility services is provided and several typical connected vehicle services are introduced. Then we analyze and characterize data that can be collected and shared in these services and point out potential privacy risks. In order to protect user privacy while ensuring service functionality, we develop novel privacy protection mechanisms for connected automotive user experiences. Specifically, we consider the whole life cycle of data collection and sharing. To support privacy preserving data collection, we design fine-grained and privacy-aware data uploading policies that ensure the balance between enforcing privacy requirements and keeping data utility, and implement a prototype that collects data from vehicle, smartphone, and smartwatch securely. To support privacy preserving data sharing, we demonstrate two kinds of risks, additional individual information inference and user de-anonymization, during data sharing through concrete attack designs. We also propose corresponding countermeasures to defend against such attacks and minimize user privacy risks. The feasibility of such attacks and our defense strategies are evaluated with real world vehicular data.Master of ScienceComputer and Information Science, College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/143518/1/thesis_Huaxin_Apr24_FontEmbed.pdfDescription of thesis_Huaxin_Apr24_FontEmbed.pdf : Thesi

    Privacy-preserving human mobility and activity modelling

    Get PDF
    The exponential proliferation of digital trends and worldwide responses to the COVID-19 pandemic thrust the world into digitalization and interconnectedness, pushing increasingly new technologies/devices/applications into the market. More and more intimate data of users are collected for positive analysis purposes of improving living well-being but shared with/without the user's consent, emphasizing the importance of making human mobility and activity models inclusive, private, and fair. In this thesis, I develop and implement advanced methods/algorithms to model human mobility and activity in terms of temporal-context dynamics, multi-occupancy impacts, privacy protection, and fair analysis. The following research questions have been thoroughly investigated: i) whether the temporal information integrated into the deep learning networks can improve the prediction accuracy in both predicting the next activity and its timing; ii) how is the trade-off between cost and performance when optimizing the sensor network for multiple-occupancy smart homes; iii) whether the malicious purposes such as user re-identification in human mobility modelling could be mitigated by adversarial learning; iv) whether the fairness implications of mobility models and whether privacy-preserving techniques perform equally for different groups of users. To answer these research questions, I develop different architectures to model human activity and mobility. I first clarify the temporal-context dynamics in human activity modelling and achieve better prediction accuracy by appropriately using the temporal information. I then design a framework MoSen to simulate the interaction dynamics among residents and intelligent environments and generate an effective sensor network strategy. To relieve users' privacy concerns, I design Mo-PAE and show that the privacy of mobility traces attains decent protection at the marginal utility cost. Last but not least, I investigate the relations between fairness and privacy and conclude that while the privacy-aware model guarantees group fairness, it violates the individual fairness criteria.Open Acces

    Multi-modal Spatial Crowdsourcing for Enriching Spatial Datasets

    Get PDF
    • 

    corecore