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Abstract

The exponential proliferation of digital trends and worldwide responses to the COVID-19
pandemic thrust the world into digitalization and interconnectedness, pushing increasingly new
technologies/devices/applications into themarket. More andmore intimate data of users are col-
lected for positive analysis purposes of improving living well-being but shared with/without the
user’s consent, emphasizing the importance of making human mobility and activity models in-
clusive, private, and fair. In this thesis, I develop and implement advanced methods/algorithms
to model human mobility and activity in terms of temporal-context dynamics, multi-occupancy
impacts, privacy protection, and fair analysis.

The following research questions have been thoroughly investigated: i) whether the temporal
information integrated into the deep learning networks can improve the prediction accuracy in
both predicting the next activity and its timing; ii) how is the trade-off between cost and perfor-
mance when optimizing the sensor network for multiple-occupancy smart homes; iii) whether
the malicious purposes such as user re-identification in human mobility modelling could be
mitigated by adversarial learning; iv) whether the fairness implications of mobility models and
whether privacy-preserving techniques perform equally for different groups of users.

To answer these research questions, I develop different architectures to model human activ-
ity and mobility. I first clarify the temporal-context dynamics in human activity modelling and
achieve better prediction accuracy by appropriately using the temporal information. I then de-
sign a framework MoSen to simulate the interaction dynamics among residents and intelligent
environments and generate an effective sensor network strategy. To relieve users’ privacy con-
cerns, I design Mo-PAE and show that the privacy of mobility traces attains decent protection
at the marginal utility cost. Last but not least, I investigate the relations between fairness and
privacy and conclude that while the privacy-aware model guarantees group fairness, it violates
the individual fairness criteria.
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Chapter 1

Introduction

1.1 Motivation

The term Internet of Things (IoT ) is used to define a network of interrelated physical objects
- things - with sensors, processing ability, software, and other technologies for the purpose of
connecting any device to other connected devices and internet [1, 2]. Generally, an IoT device
is something that has an internet connection [3, 4], including but not limited to smart consumer
electronics (e.g., smartwatches [3], appliances [4], security cameras [5]), industrial machin-
ery [6], smart infrastructure [7], fleet and logistics (e.g., vehicles, ships, aircraft) [8, 9], con-
nected marketplaces [10], etc. According to the market and consumer data from Statista [11],
with more than 13.1 billion connected devices in the world today, experts are expecting this
number to grow to 29.4 billion by 20301. The global IoT market size was worth around 389
billion U.S. dollars in 2020 and is forecast to rise to more than one trillion dollars in 2030,
exhibiting a compound annual growth rate (CAGR) of 26.4% during the span of time2 [11].

The exponential proliferation of digital trends has thrust the world onto digitalization and
interconnectedness [3, 4, 12]. Among such a wide variety of IoT, the smartphone and smart
home have the highest penetration rate and internet usage, where a higher usage generally means
a more receptive market for new applications, investments, and innovations [11]. Since 2020,
the COVID-19 pandemic has also driven dramatic shifts in human lives, unprecedented and
staggeringly, which also accelerates a rapid and large-scale adoption of IoT devices and other
tracing applications [13, 14]. This trend toward digital transformation and the digital economy
are constantly pushing new technologies/devices into the market [15]. On the one hand, lives
have been altered significantly in fighting the battle with the pandemic, including but not limited
to zoom burnout, mask profiteering, virtual conferences, and work from home (WFH) [16,
17]. The pandemic has supercharged the trend that technology erodes the wall between work
and home. People rely more heavily on consumer electronics, and more personal data have
been collected with/without their consent. On the other hand, social isolation due to pandemics

1https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
2https://www.statista.com/statistics/1194709/iot-revenue-worldwide/
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on disadvantaged, marginalized, and vulnerable populations have consequences on their well-
being and overall health, especially for the elderly [18, 19]. With social isolation, loneliness
among seniors is linked to a higher rate of depression and anxiety, which is also associated with
a greater risk of dementia and death from all causes [19].

In this digital trend, more and more intimate data of users are collected for a positive analysis
purpose of improving living well-being while being shared with/without the user’s consent [20,
21]. The facts of the high penetration of connected devices and large-scale data collection em-
phasize the importance of making human mobility and activity models inclusive, private, and
fair [22, 23]. Hence, with diverse needs for a variety of intelligent scenarios, human mobility
and activity modelling should always keep pace with the times, satisfy the users’ needs prac-
tically, and also be more privacy-sensitive. In this thesis, advanced methods and algorithms
are developed to model human mobility and activity in discussing the temporal-spatial impacts,
multi-occupancy impacts, privacy protection, and fair analysis. The motivations of the work
are concluded in three dimensions as follows:

I. Human Mobility Modelling

During the last decade, the growing number of internet and smartphone users has funda-
mentally reshaped the digital economy [4, 12]. Rapid and large-scale adoption of mobility
devices brings unprecedented data for researchers and practitioners to analyze in sectors such
as census estimates [24], tourism [25], marketing [26], urban planning [27], etc. Due to the
pandemic, human mobility data has come to prominence with more applications again, includ-
ing but not limited to community transmission risk, effectiveness, and impact of social distance
policies [28]. A study conducted by De Montjoye et al. [29] examined human mobility data
for one and a half million individuals over fifteen months and found that four spatio-temporal
points are enough to uniquely identify 95% of the individuals. While there is no doubt about
the usefulness of predictive applications for mobility data, privacy concerns regarding the col-
lection and sharing of individuals’ mobility traces have prevented the data from being utilized
to their full potential [30–32]. All of these give room to privacy concerns and highlight the
importance of exploring the privacy-utility trade-off of human mobility.

II. Human Activity Modelling

Apart from human mobility, human activity modelling (i.e., human activity recognition,
HAR) can be leveraged to provide human action information and build a behavioural profile.
HAR is the central task to many intelligent systems such as smart homes [33], long-term health-
care [34], personal robotics [35], assisted living [36], and human-computer interaction [37]. As
one of the most popular research scenarios, healthcare or eldercare utilized HAR to improve
seniors’ lifestyles and prolong their independent life by forecasting potential risks or dementia
trends. To fully understand the context of HAR, the temporal-context dynamics are essential.
Additionally, while multitudes of sensors extend the variety of information received, the het-
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erogeneity of the devices [38] and the increasing number of the residents [39, 40] complicate
the data collection system in real settings. Even for single-occupancy scenarios, where only a
single individual is in the single space, the diversity of sensor settings or floorplans could affect
the overall performance of sensor networks. Importantly, sensor networks designed for single-
occupancy houses are never deployed in identical settings, and sensor selection in each system
is diverse, varying from commercial products to self-built devices [41–44]. The price, stability,
precision, and coverage range of different sensors affect the implementation and performance
of sensor-based systems [44]. It isn’t easy to find a uniform sensor integration system flexible
to different homes, especially when the houses might have more than one resident, referring
to the multi-occupancy scenarios in this thesis. Prior research has already specified the sig-
nificance of multi-occupancy scenarios. Still, the complexity of the ongoing sensor networks
and unknown uncertainties impede the actual implementation of the sensor network and further
analysis [39, 45–48].

III. Privacy-preserving Mechanism

As the adoption of advanced human mobility and activity modelling rises in recent years,
so as the concerns about the privacy protection of data utilization. New regulations such as the
General Data Protection Regulation (GDPR) [49] in Europe and California’s Consumer Privacy
Act (CCPA) [50] in the US have emerged for the purpose of data privacy protection. There is
no doubt that the increasing digital trend magnifies the uniqueness of individuals as more inti-
mate information is unveiled. With increasingly intelligent devices and sensors being utilized
to collect information about users’ locations and activities, a malicious third party can derive
increasingly intimate details about users’ lives, from their social life to their preferences [51].
User re-identification and other sensitive inferences are major privacy threats when geolocated
data are shared with cloud-assisted applications [52]. Hence, a mechanism capable of decreas-
ing the chance of user re-identification against malicious attackers or untrusted SPs can offer
enhanced privacy protection in mobility data applications, as human mobility traces are highly
unique.

1.2 Objectives and Outlines

This thesis mainly focuses on the study of making human mobility and activity models in-
clusive, private, and fair. The studied scenarios and architectures with objectives are outlined
as follows:
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1.2.1 Human Activity Modelling in Mapping Contextual-temporal Dynamics

Chapter 2 - Existing activity recognition technologies empower the smart home to perceive the
ambient environment. Efficient activity prediction, based on activity recognition, can enable
the smart home to provide timely, personalized services. However, predicting the next activity
and its specific occurrence period are challenging due to the complexity of modelling human
behaviour. This chapter aims to understand whether the temporal information integrated into
the deep learning networks can improve the prediction accuracy in predicting the next activity
and its timing.

1.2.2 Human Activity Modelling in Multiple-Occupancy Smart Home

Chapter 3 - Smart home solutions increasingly rely on various sensors for behavioural analytics
and activity recognition to provide context-aware applications and personalized care. Optimiz-
ing the sensor network is one of the most important approaches to ensuring classification ac-
curacy and system efficiency. However, the trade-off between cost and performance is often a
challenge in real deployments, particularly for multiple-occupancy smart homes. The majority
of the feasible and practical solutions are limited to the single-occupancy scenario, where the
system is not easily capable of identifying and assessing the target individual, without the use of
costly and often privacy-invasive technologies. To aid in accelerating the adoption of practical
sensor-based activity recognition technology, in this chapter, MoSen is introduced, a frame-
work to simulate the interaction dynamics between sensor-based environments and multiple
residents.

1.2.3 Privacy-aware Adversarial Network in Human Mobility Modelling

Chapter 4 - As mobile devices and location-based services are increasingly developed in differ-
ent intelligent city scenarios and applications, many unexpected privacy leakages have arisen
due to geolocated data collection and sharing. User re-identification and other sensitive infer-
ences are major privacy threats when geolocated data are shared with cloud-assisted applica-
tions. To tackle malicious purposes such as user re-identification, in this chapter, I propose
an LSTM-based adversarial mechanism (i.e., Mo-PAE) with representation learning to attain
a privacy-preserving feature representation of the original geolocated data (i.e., mobility data)
for a sharing purpose. These representations aim to maximally reduce the chance of user re-
identification and full data reconstruction with a minimal utility budget (i.e., loss).
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1.2.4 Characterizing Mobility Data on the Privacy and Fairness

Chapter 5 - Preserving the individuals’ privacy in sharing spatial-temporal datasets is critical to
prevent re-identification attacks based on unique trajectories. Existing privacy techniques tend
to propose ideal privacy-utility tradeoffs, however, they largely ignore the fairness implications
of mobility models and whether such techniques perform equally for different groups of users.
The quantification between fairness and privacy-aware models is still unclear, and no defined
sets ofmetrics barely exist formeasuring fairness in the spatial-temporal context. In this chapter,
I define a set of fairness metrics designed explicitly for human mobility and investigate the
fairness of privacy-aware models.

1.3 Contributions

In the Human activity modelling in mapping contextual-temporal dynamics:

• I develop two LSTM-based activity predictors, both with deep contextualized word rep-
resentation on sensor labels, one with temporal information and one without;

• I discuss the contextual-temporal dynamics in modelling human activity prediction. The
results highlight that if temporal information is used appropriately, the model with times-
tamp can outperform the model without.

In the Human activity modelling in multiple-occupancy smart home:

• To aid in accelerating the adoption of practical sensor-based activity recognition technol-
ogy, I designMoSen 3, a framework to simulate the interaction dynamics between sensor-
based environments and multiple residents;

• By using real indoor activity andmobility traces, floor plans, and syntheticmulti-occupancy
behaviour models, several multi-occupancy household scenarios with 2-5 residents are
emulated and evaluated;

• I explore and quantify the trade-offs between the cost of sensor deployments and expected
labelling accuracy in different scenarios. The evaluation across different scenarios shows
that the performance of the desired context-aware task is affected by different localization
resolutions, the number of residents, the number of sensors, and varying sensor deploy-
ments;

3https://github.com/YutingZhan/MoSen
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• By evaluating the factors that affect the performance of the desired sensor network,MoSen
provides a sensor selection strategy and design metrics for sensor layout in real environ-
ments. Using the selection strategy in a 5-person scenario case study, I demonstrate that
MoSen can significantly improve overall system performance without increasing the de-
ployment costs.

In the Privacy-aware adversarial network in human mobility modelling:

• To tackle malicious purposes such as user re-identification, I propose a privacy-aware ad-
versarial network to train an effective feature extractor EncL formobility privacy, namely
Mo-PAE 4;

• I report the analysis of Mo-PAE by a comprehensive evaluation of four real-world repre-
sentative mobility datasets;

• I provide an extensive analysis of different inference tasks and quantify the privacy and
utility bound of the target mobility dataset, along with a trade-off analysis between these
contrasting objectives;

• I compare the Mo-PAE with, i) a famous DP notion that developed on the idea from Geo-
indistinguishability [53] (namely GI-DP); ii) a state-of-the-art GAN-basedmechanism that
attempts to generate synthetic privacy-preserving mobility data (namely TrajGAN [54]);
iii) as well as the optimal LSTM-based inference models, and obtain favourable results.

In the Characterizing mobility data on the privacy and fairness:

• I define a set of fairnessmetrics designed explicitly for humanmobility, based on structural
similarity and entropy of the trajectories;

• Under these definitions, I examine the fairness of two state-of-the-art privacy-preserving
models that rely on GAN and representation learning to reduce the re-identification rate
of users for data sharing;

• The results show that while both models guarantee group fairness in terms of demographic
parity, they violate individual fairness criteria, indicating that users with highly similar
trajectories receive disparate privacy gain;

• I conclude that the tension between the re-identification task and individual fairness needs
to be considered for future spatial-temporal data analysis andmodelling to achieve a privacy-
preserving fairness-aware setting.

4https://github.com/YutingZhan/Mo-PAE
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Chapter 2

Activity Prediction in Mapping
Contextual-Temporal Dynamics

Human activity recognition (HAR) technology is trendy in emerging domains (e.g., smart
home and healthcare) due to the increasing availability of sensors, accelerometers, images and
videos [55]. It analyzes data acquired from these sensing devices and empowers the smart
home to perceive the ambient environment [56]. Efficient activity prediction (i.e., next activ-
ity forecasting), based on activity recognition, can enable the smart home to provide timely,
personalized services. However, predicting the next activity and its specific occurrence period
are challenging due to the complexity of modelling human behaviour. This chapter leverages
sensor-based human activity datasets and aims to understand whether the temporal informa-
tion integrated into the deep learning networks can improve the prediction performance or not.
I develop and implement two LSTM-based activity predictors, both with deep contextualized
word representation on sensor labels, one with temporal information and one without. The re-
sults highlight that if utilizing temporal information appropriately, the model with timestamp
can outperform the model without. Therefore, comprehending contextual-temporal dynamics
is highly important when modelling human activity prediction.

2.1 Introduction

As one of the prominent applications of HAR, the context-aware smart home is expected
to improve the ubiquitous interaction between the residents and their intelligent environment.
This ubiquitous interaction contributes to enhancing the residents’ quality of life. Smart homes
empowered by the advanced indoor monitoring and tracking systems, in this ubiquitous inter-
action, have the capability to perceive and cognize the ambient environment, where activity
recognition plays an important role. Leveraging activity recognition, human behaviours can
be recorded, modelled, and further analyzed. One promising application of smart homes is the
long-term healthcare of the elderly group. Continuous daily monitoring not only can occasion-
ally liberate caregivers [57] but also can clinicians use the data to prevent the degradation of
an elder’s health status at an early stage. At the same time, intelligent assistive technologies
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contributed to a healthcare-based smart environment can mitigate the socioeconomic burden of
the elderly and their families [58].

However, current research on activity recognition overlooks the interactions between hu-
mans and the environment, especially for cognitively or functionally impaired persons [59].
One promising bridge of the gap is to provide user-friendly, ubiquitous, and proactive services
to particular groups that are being taken care of. With unobtrusive sensing technologies, activity
recognition with predictive capability can build a more proactive ecosystem. Efficient activ-
ity prediction based on recognition labels can consolidate the expected ubiquitous interaction.
Consider long-term healthcare as an example; successfully predicting the elder’s intention or
next activity can call caregivers’ attention to helping themwhen needed, then relieving the care-
giving burden and improving caregiving efficiency. It can also enhance the ecosystem response
in a more proactive and user-friendly way.

Prediction of human activity is challenging because of the complexity of modelling human
behaviours. Though human behaviours and activities are hard to model, the time series of
human activity sequences are periodic, repetitive, and interdependent as human beings are a
creature of habit [60]. More interestingly, in [61], the authors create a deep learning architec-
ture to model human indoor activity and claim that none of the proposed options to take into
account the timestamps improved the prediction performance. This phenomenon emphasises
the importance of the study on the timestamps’ effect on prediction performance. To this end, I
train a persuasive predictor by answering the question: given the user’s indoor activity history,
which is a sequence of time-series sensor data, how to integrate the temporal information into a
deep learning model (i.e., LSTM-based) to achieve a better prediction performance? I conduct
a series of experiments and leverage activity-level experiments to evaluate the performance of
predictive models with integrated temporal information.

This chapter [62] highlights that a deep learning network with an integrated timestamp can
have better prediction performance, which is important for further human behaviour modelling
and prediction. I conclude how the contextual-temporal dynamics will exert influence on the
final predictive model performance. The result demonstrates the improvement of the prediction
accuracy for the next activity and time.

2.2 Related Work

2.2.1 Perception of Human Behavior

The research of machine perception motion conducted by Bobick [63] takes both time and
context into consideration when recognizing a video sequence and breaks human behaviour
into a tripartite hierarchy: movement, activity, and action. Movement refers to a motion of
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which execution is consistent and can be expressed as a pixel-based description characterized
by a defined space-time trajectory. For instance, consider the baseball game, swinging the bat is
a typical movement, as one will see a slight variation in the motion from the current pixel to the
next pixel. Activity, like pitching a baseball, containsmore steps than amovement, composed of
a series of movements. One of the most popular activity attracts researchers is gait recognition,
consisting of a sequence of movements to configure different walking types. Action, which is
at the boundary between perception and cognition, needs a full understanding of the context.
For example, in the baseball game, tagging out the runner happens when a fielder with the ball
causes his glove to come in contact with a base-runner who is not touching a base at the time.
Recognizing an action requests the recognizer to have rich knowledge of the domain and be able
to capture a semantic description of the motions. In summary, movement is the most primitive,
requiring no contextual or sequence knowledge to be recognized; activity refers to sequences
of movements or states and it only requires the knowledge of the sequence’s statistics; action
are large-scale events and typically include the interaction with environment [63].

In this thesis, the activity-level human behaviour is in the research scope, which also follows
the most generalized definition of human activity. Advanced ubiquitous sensing technologies
enable different kinds of sensors to gather human activity data in their daily life. These sensing
technologies include but are not limited to wireless sensing, wearable sensors, and ambient
environmental sensors. Those sensors can record a person’s daily life as a time series of sensor
data. Activity recognition aims to understand the metadata that emanated from multifarious
sensors and transform them into a sequence of physical activities. Activity recognition, in a
way, provides the researchers with a feasible approach to investigating and modelling human
behaviour. With the rise of machine learning algorithms in the past decades, activity recognition
is a well-research area with persuasive recognition precision.

In [64], the authors concluded the main activities considered in smart home scenarios and
divided them into three categories (i.e., basic ADLs, instrumented ADLs, and ambulatory ac-
tivities) based on the seniors’ independent living. Basic ADLs refer to the necessary self-care
activities, such as bathing, brushing teeth, dressing, using the toilet, eating and drinking, and
sleeping. Instrumented ADLs are those that are not strictly necessary but needed when an in-
dividual lives independently, such as preparing meals and drinks, resting, housekeeping, using
a telephone, and taking medicine appropriately and promptly. Ambulatory activities are re-
lated to either specific motions or postures of the person, such as walking (up and down stairs),
doing exercise (running, cycling, etc.), transitional activities (sit-to-stand, sit-to-lie, etc.), and
stationary activities (sit on the sofa, lie in bed, etc.).

In [65], the authors addressed the definition of the time intervals in artificial intelligence,
and this Allen relations [65] are commonly used to describe temporal links between activities.
It used constraint propagation techniques to describe relationships between temporal intervals
hierarchically. The author concluded thirteen temporal relationships, as shown in Figure 2.1.
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Conceptualizing temporal relationships among different activities is crucial when accurately
modelling human behaviours. Figure 2.2 represents the common temporal relationship between
activities.
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Figure 2.1: The thirteen possible temporal relationships concluded by Allen [65].
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Figure 2.2: The common temporal relationships between activities: (a) composite activities;
(b) sequential activities; (c) concurrent activities; (d) interleaved activities.

2.2.2 Neural Network

Recurrent neural networks (RNN) is specialized for processing a temporal sequence of data
x(t) = x(1), . . . , x(⌧) (t is timestep, t = 1 . . . ⌧ ), which allows it to exhibit temporal dynamic
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behaviours, as shown in Figure 2.3. It is applicable to utilize previous outputs as inputs while
having hidden states. The mathematical equation of RNN is as follows:

h<t> = �1(Uxhx
<t> +Whhh

t�1) (2.1)

For each time step, h<t> is hidden state, h<t�1> is the hidden state at t� 1. x<t> is the input
at t. Uxh is the input-to-hidden weight matrix for x<t> to h<t>. Whh is the hidden-to-hidden
weight matrix for h<t�1> to h<t>. Vho is the hidden-to-output weight matrix for ht to o<t>. �1

and �2 are activation functions.

o<t> = �2(Vhoh
<t> + bo) (2.2)

The loss function is defined as follows:

L(ŷ, y) =
TX

t=1

L(ŷ<t>, y<t>) (2.3)

Back-propagation is done at each point in time:

@L<t>

@W
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… … … …

Figure 2.3: The basic architecture of standard RNN. The rectangles represent network layers,
and the solid arrows represent weighted connections (i.e., V, W, U ). The entire network is de-
signed with loops, which allow information from the previous time step to be passed as input to
the current time step. In this manner, RNN processes sequences of inputs without losing track.

Long Short-Term Memory units, or LSTMs, proposed by Hochreiter and Schmidhuber in
1997 [66], is a prominent variant of RNN, shown as the flowchart in Figure 2.4. LSTM has
been shown to exhibit brilliant performance in modelling entire sequences of data, especially
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for linking remote causes and effects in time-series data. LSTM can efficiently handle the
difficulty of learning long-term dependencies with gradient descent in a standard RNN. The
capability of LSTM on remote dependencies empowers it to be one of the dominant networks
in time-series-data analysis and sequence generation.
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Figure 2.4: The repeating cell in a standard LSTM. The grey rectangle represents a chunk of
neural networks with loops, which allows information to persist.

A common LSTM unit contains a cell c̃t, an input gate it, an output fate ot, and a forget gate
ft. The cell remembers values over arbitrary internals. The forget gate chooses the information
from the previous timestep to be remained it to be forgotten. The input gate learns new forma-
tions from the new input. The output fate passes updated information to the next time step. The
three gates simultaneously regulate the information to forward to the next node. Formally, the
LSTM can be expressed as follows:

8
>>>>>>><

>>>>>>>:

? = element� wise multiplication, + = element� wise addition
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xh)

(2.5)

(
c<t> = �(ft ? c<t�1> + it ? c̃t)

h<t> = tanh(c<t> ? ot)
(2.6)

28



CHAPTER 2. ACTIVITY PREDICTION 2022

2.2.3 Representation Techniques

In sequential data processing and learning, especially NLP, two of the most popular concept for
vector representation techniques are one-hot embedding and word embedding.

One-hot embedding

In machine learning, a one-hot is a group of bits among which only one bit is hot (1) at any time
and all the others cold (0) [67]. As a crucial part of feature learning, one-hot embedding converts
categorical data variables and produces a binary vector with the same length of the number of
categories [68]. For example, say convert colours red, green, and blue into binary vectors by
using one-hot embedding, the numeric values are first assigned to each colour category (i.e., red
@= 1, green @= 2, blue @= 3), and then each integer value is converting to a binary vector with the
index of the integer is marked with a 1 but others with 0 (i.e., red @= [100], green @= [010], blue
@= [001]). With one-hot embedding, each bit of state contributes to the representative vector.
It is an easy and effective implementation in data transformation, especially when variables
have no relation to each other. However, the biggest concern faced is the dummy variable trap
problem [69], where the variables are highly correlated.

Word embedding

Word embedding techniques are developed to learn vector space representations of words,
where words with similar meanings have a similar representation. Word2Vec [70] is one of
the most popular vector-space word representations developed by Mikolov et al. at Google in
2013. Word2Vec is examined to better capture syntactic and semantic regularities in NLP, al-
lowing vector-oriented reasoning based on the relation-specific offsets between words. GloVe
is an extension to the Word2Vec, which developed by Pennington et al. in 2014 [71]. It si-
multaneously captures the global corpus statistics of matrix factorization techniques and local
context-based learning in Word2Vec.

2.3 Proposed Architecture

Unlike some previous healthcare platforms driven by rule-based reminders, the proposed
architecture in this chapter is sensor data-driven, autonomous and proactive. The overview
of the proposed prediction architecture is shown in Figure 2.5. Data is emanated from the
ubiquitous sensors and is further labelled as the sequences of activities. These labels are then
represented as ELMo vectors [72] and fed into the LSTM model to train the activity predictor.
At the same time, each activity class has its LSTM-based time predictor. When the prediction of
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Figure 2.5: Overview of the proposed prediction architecture.

the next activity is generated, the corresponding time predictor will be triggered and predict the
specific occurrence period, as shown in Figure 2.5. With this valuable information, caregivers
can estimate the right time to provide appropriate help to the elderly.

2.3.1 Dataset Description

The proposed models use sensor data instead of cutting-edge wireless signal data, as existing
wireless signal-based activity recognition methods have lower accuracy and can only recognize
one or several activities. However, the quality of prediction depends on the diversity of the rec-
ognized activities. Three widely-used datasets of activity recognition literature are compared:

• CASAS datasets [42]: it is a sensor-based human activity dataset that records and collects
human activity for 20 participants in the smart home using an infrared motion sensor,
light sensor, door sensor, and temperature sensors. These participants are aged 21 to 62
years and have various backgrounds and technological familiarity. The activities recorded
include bed-toilet transition, cooking, eating, entering the home, leaving home, personal
hygiene, phone, relaxation, sleep, and work.

• Tapia dataset [73]: it collects data for 14 days in two single-occupancy apartments, one
is occupied by a 30-year-old woman and another is an 80-year-old woman. The first
apartment was installed unattended with 77 state-change sensors and 84 in the second
apartment. The activities recorded include preparing lunch, toileting, preparing breakfast,
bathing, dressing, grooming, preparing a beverage, doing laundry, and so on.

• Kasteren dataset [43]: it consists of 28 days of sensor data with annotations of a 26-year-
old man, who lives alone in a three-room apartment where 14 state-change sensors were
installed. Sensors are placed unattended on doors, cupboards, refrigerators, and a toilet
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flushes sensor. It has 2120 sensor events and 245 activity instances. The activities recorded
include idle, leaving, toileting, showering, sleeping, breakfast, dinner, and drinking.
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Figure 2.6: Dataset description. Each line in the dataset at least contains date, timestamp and
sensor ID.

All chosen datasets to validate my assumptions are single-person apartment monitoring data
that emanated from multiple sensors. Each line of data should at least contain date, timestamp,
sensor ID, and activity label, as shown in Figure 2.6. Formally, one timestamp ti is recorded as
a result of one sensor trigger by the resident, and one sensor trigger is mapped as one activity
ai. The activity recognizer will generate the sequence of activities by analyzing the sensor data.

The prediction task can be formulated as a variant of the sequence generation task: given a
sequence of resident’s past activities {a1, a2, . . . , ai} or past actions {A1, A2, . . . , Ai} in con-
certed with a sequence of timestamps {t1, t2, . . . , ti} until time ti, to predict the next activity
ai+1 or next action Ai+1 and their occurring time ti+1.

2.3.2 ELMo Representation

The prominent word representation in the deep learning area is word embedding, and one of
the most frequently-used word embeddings isWord2Vec embedding. However, the Word2Vec
embedding and other similar word embeddings are now losing their dominance in Natural Lan-
guage Processing (NLP) area due to the rise in availability of novel pre-trained language mod-
els. ELMo [72], the abbreviation ofEmbedding from LanguageModels, is a deep contextualized
word representation which has shown the potential to improve the state-of-the-art performance
of existing NLP tasks. Unlike other word vectors, the ELMo vector can be learned by a deep
bidirectional language model pre-trained on a large text corpus [72]. Hence, ELMo representa-
tion can better model both semantic complexity and context-based polysemy. In the proposed
model, I use ELMo representation to define each activity’s embedding matrix, a 128-dimension
vector, in the embedding layer of the LSTM model.
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2.3.3 Long Short-Term Memory Network

In this work, the LSTM network is well-suited to the sensor data, which is sparse, time-varying,
and interdependent. In order to verify my hypothesis that the LSTM models that take into
account the temporal information of sensor data will have better prediction performance than
the ones without this information, I compare two LSTM models in a row. The first model
has only one LSTM layer for activity embedding, while the other has an extra LSTM layer
to integrate timestamps. These two models are referred to One-LSTM and Temporal-LSTM,
respectively.

2.4 Evaluation and Results

Three different experiments are set up to evaluate the performance of the proposed architec-
tures with integrated temporal information. These architectures’ performances are compared
with a baseline, which usedWord2Vec embedding for action representation and an LSTM-based
network for human behaviour modelling [61]. Prediction accuracy is one of the most impor-
tant features for assessing the performance of the predictive model, thereby I use the prediction
accuracy as the evaluation metric, from one- to five-attempt, which would keep horizontal com-
parison with the baseline.

2.4.1 Varying Context Size

Different lengths of the context size exert an effect on the prediction performance of a recurrent
model [74]. By changing the length of the input activity (context size) from 1 to 200, I observed
that the length of input activity has a high impact on the accuracy of two proposed LSTM
models, as shown in Figure 2.7. Note that the optimal context size of the first model is situated
at the interval [40, 90], while the second model is at the interval [70, 120].

Compared with the One-LSTMmodel, the Temporal-LSTMmodel performs better from all
1-attempt to 5-attempt predictions, especially for 1-attempt and 5-attempt, where the accuracy is
higher than 0.5 and 0.9, respectively. The comparison between these two models also illustrates
that even with the same dataset, different architectures would have different optimal values.
When considering the temporal information, sufficient context improves performance while
insufficient context decreases performance.
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Figure 2.7: Prediction accuracy changes with the length of input activity (context size) in two
LSTM models. Grey bins illustrate the optimal area of each model.

2.4.2 ELMo Embedding or Word2Vec Embedding

In the baseline experiment, Word2Vec embedding representation has been used in the embed-
ding layer of LSTM to provide better performance than one-hot vectors [61]. In the proposed
models, ELMo representation defines each activity’s embedding matrix. The pre-trained lan-
guage model generates a 128-dimension vector for each activity. Then these vectors are fed
into the embedding layer of LSTM models.

In this contrast experiment, the ELMo embedding-based models are compared with the
Word2Vec embedding-based models, as shown in Figure 2.8. The results illustrate that the
ELMo representation can improve the prediction accuracy, where the increment is 5.93% aver-
agely for the One-LSTM (1LSTM), and 8.57% for the Temporal-LSTM (2LSTM). With ELMo
representation, the integration of time information (2LSTM) can also improve the performance,
which demonstrates that ELMo representation has more potential to illustrate the contextual-
temporal dynamics in activity prediction.

2.4.3 One-LSTM or Temporal-LSTM

In the baseline study [61], Almeida and Azkune evaluated three different fusion strategies on the
LSTM network and found that all fusion strategies considering timestamps {t1, t2, . . . , ti}were
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Figure 2.8: Improvement of ELMo representation when compared to Word2Vec embedding.
The 2LSTM with ELMo representation outperforms the 1LSTM.

detrimental to the results. Their data is shown in the w2v line in Table 2.1, where Temporal-
LSTM (2LSTM) has worse performance.

On the contrary, in the proposed LSTM models, the results in Table 2.1 admit that the time
layer can improve the accuracy of prediction, especially for the increments at 1-attempt (top1)
and 5-attempt (top5) situations. In general, the Temporal-LSTM (2LSTM) has better prediction
accuracy than One-LSTM (1LSTM). I demonstrate that if temporal information can be used
appropriately, the model can have better prediction results, especially for a small dataset.

2.5 Use Case

The topic of the ageing population has emerged as one of themost formidable socio-economic
challenges faced by both developed and developing countries. The enormous elderly population
increases the economic burden on the sophisticated well-being system, posing a critical chal-
lenge to long-term healthcare. In Europe, the number of people aged 65 and over is expected to
grow to 28% of the population in 2060 [75]. The demographics of the elderly group afflicted
by Alzheimer’s disease and related dementia are proportional to the growing ageing population
trend. By 2030, $2 trillion will be spent each year globally for the well-being of the dementia
group [76].

34



CHAPTER 2. ACTIVITY PREDICTION 2022

top1 top2 top3 top4 top5

w2v 1LSTM 0.4744 0.6282 0.7179 0.7905 0.8589
2LSTM 0.4487 0.6239 0.7094 0.7692 0.8076

50 1LSTM 0.4844 0.6933 0.7822 0.84 0.8577
2LSTM 0.5112 0.6712 0.7734 0.84 0.8712

70 1LSTM 0.5027 0.7014 0.8145 0.8507 0.8688
2LSTM 0.5249 0.6787 0.7828 0.8733 0.8869

Table 2.1: Prediction accuracy of two ELMo-embedded LSTM models when context size is
50 and 70, respectively, are compared with the baseline (w2v). Note that in the baseline (w2v)
experiment, the temporal information is detrimental to the final prediction, where 2LSTM has
worse performance. For the ELMo-embedded LSTM models, the Temporal-LSTM (2LSTM)
outperforms the One-LSTM (1LSTM), whichmeans the contextual-temporal dynamics are well
mapping when temporal information can be appropriately used in the predictive model.

Integrating assistive technologies into the smart home paradigm [57] is regarded as a poten-
tial trend for setting up care for different elderly groups, especially for candidates with dementia
and other mild cognitive or functionally impaired elders. This approach can reduce time and
cost expenditures of long-term healthcare while improving the quality of life for the target pop-
ulation and their caregivers. However, in current research, caregiver distress correlated with
multifarious geriatric symptoms is overlooked, where there is a significant gap in relieving
the psychological burden for caregivers [57]. For instance, the dementia group has a series of
symptoms, including but not limited to agitation, irritability, depression, delusion, etc. Those
symptoms torture and distress their formal or informal caregivers [57]. Caregiving with de-
pression and frustration is detrimental to the wellness of both parties, which might escalate the
tension and intensify potential conflicts between them [76].

One promising way to mitigate these negative effects is to implement efficient non-verbal
communication, or collaboration, between the elderly group and their caregivers. Research
by Koumakis et al. has emphasized the demand for cultivating an appropriate collaboration
between those suffering from mild dementia and their caregivers [57].

The ability to model the elderly behaviours and predict their next activity is extremely valu-
able in cultivating this particular collaboration and smoothing their communication with each
other. However, modelling human behaviours and predicting human next activity are highly
challenging due to the complexity of human behaviours. Though human behaviours and ac-
tivities are hard to model, they can be represented by a time series of periodic, repetitive, and
interdependent sequence data, as humans are creatures of habit. These properties allow the se-
quence of human activity to be predictable. Especially for the elderly and the candidates for
dementia, their lives are much more monotonous and repetitive.

In my proposed framework, by leveraging the indoor activity recognizer [74], an elder’s
activity can be recognized, recorded, and further analyzed. The results of such activity recog-
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nition are then fed into the activity predictor, which can predict the next activity or intention of
the group that is taken care of. The persuasive prediction can relieve the tension resulting in
discrete wills between two groups. For long-term healthcare, successfully predicting the elder’s
next activity or intention can call caregivers’ attention to helping them when needed, which can
relieve the caregiving burden and improve efficiency and the quality of life for both groups.

Undoubtedly, activity prediction plays a vital role in this communication between the elderly
and their caregivers. Hence, this chapter trains a more persuasive activity predictor by using the
deep contextualized word representation (ELMo) [72] and integrating the temporal information
of the data into the proposed LSTM framework. The results highlight that an appropriate utility
of the temporal information can have better prediction accuracy. While better predictions in
the proposed framework allow caregivers more personal time and relieve their psychological
burden. With persuasive predictions, both groups’ well-being is considered in their daily lives.

2.6 Discussions

The valuable information provided by activity prediction can build an efficient collabora-
tion between the elderly and caregivers, a cornerstone of a better quality of life for both groups.
In addition to effective communication between them, in long-term healthcare, successfully
predicting an elder’s intention or next activity can provide a series of activity-aware services,
including penalizing the intelligent environment, prompting-based intervention, anomaly de-
tection, etc. There is still a large potential improvement in prediction accuracy. A genuinely
persuasive prediction can undoubtedly improve the elder’s quality of life and well-being, so as
the caregivers.

In real-time prediction settings, a well-trained activities recognizer recognizes the activities
as inputs for the predictor. At the same time, the recognizer would also provide a baseline for
the predictor to verify each prediction. However, there are three challenges: firstly, the current
indoor activity recognizer utilized in the predictor depends mainly on ambient sensors, which
cannot recognize micro-actions and realize continuous tracking; secondly, activity predictor
based on the deep neural network still has low accuracy and low time sensitivity unexpectedly;
thirdly, the multi-person scenario is always challenging and need feasible solutions.

Overall, the result of this chapter has shown that if temporal information can be used ap-
propriately, the model can have better prediction accuracy, especially for a small dataset. This
is a favourable outcome as if less data is required, the smaller the invasion of user privacy.
However, at the same time, due to the scarcity of the big labelled sensor-based human activity
datasets, the performance of the proposed model with more extensive datasets is limited and
needs more investigation in the future.
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Chapter 3

MoSen: Activity Modelling in
Multiple-Occupancy Smart Homes

Smart home solutions increasingly rely on various sensors for behavioural analytics and ac-
tivity recognition to provide context-aware applications and personalized care. Optimizing the
sensor network is one of the most critical approaches to ensuring classification accuracy and
system efficiency. However, the trade-off between cost and performance is often a challenge in
real deployments, particularly for multiple-occupancy smart homes or care homes. In this chap-
ter, using actual indoor activity and mobility traces, floor plans, and synthetic multi-occupancy
behaviour models, I evaluate several multi-occupancy household scenarios with 2-5 residents.
I explore and quantify the trade-offs between the cost of sensor deployments and expected la-
belling accuracy in different scenarios. The evaluation across different scenarios shows that
the performance of the desired context-aware task is affected by different localization resolu-
tions, the number of residents, the number of sensors, and varying sensor deployments. To
aid in accelerating the adoption of practical sensor-based activity recognition technology, I
design MoSen [77], a framework to simulate the interaction dynamics between sensor-based
environments and multiple residents. By evaluating the factors that affect the performance of
the desired sensor network, I provide a sensor selection strategy and design metrics for sen-
sor layout in natural environments. Using the selection strategy in a 5-person scenario as the
case study, the performance demonstrates thatMoSen can significantly improve overall system
performance without increasing the deployment costs.

3.1 Introduction

HAR is a central task ofmany intelligent systems such as smart homes [33], long-term health-
care [34], personal robotics [35], assisted living [36], and human-computer interaction [37].
Current works illustrate that human activity can be recognized using two main approaches:
vision-based [78] and sensor-based [79]. Vision-based activity recognition utilizes cameras to
capture or record individuals’ motions [78], while sensor-based systems leverage wearable or
ambient sensors to understand the movements of the subjects and the interactions between peo-
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ple and the environment [80]. While vision-based approaches are often privacy-invasive, the
sensor-based systems, which are highlighted in this thesis, are often more privacy-friendly and
take advantage of their pervasiveness [48]. Currently, more and more sensors are getting em-
bedded into the ambient environment, wearable electrical products, and intelligent appliances
to aid with sensor-based activity recognition systems. The multi-modal sensor data enables the
system to receive rich context information and to have the capability to process personalized
behavioural analytics and provide context-aware applications [33].

While multitudes of sensors extend the variety of information that can be received, the het-
erogeneity of the devices [38] and the increasing number of residents [39, 40] complicate the
data collection system in real settings. Even for single-occupancy scenarios, where only a sin-
gle individual is in a single space, the diversity of sensor settings or floorplans could affect
the overall performance of sensor networks. Importantly, sensor networks designed for single-
occupancy houses are never deployed in identical settings, and sensor selection in each system
is diverse, varying from commercial products to self-built devices [41–44]. The price, stability,
precision and coverage range of different sensors affect the implementation and performance of
sensor-based systems [44]. It is not easy to find a uniform sensor integration system flexible to
distinct homes, especially when the homes might have more than one resident, referring to the
multi-occupancy scenarios in this chapter. Prior research has already specified the significance
of multi-occupancy scenarios, but the complexity of the ongoing sensor networks and unknown
uncertainties impede the real implementation of the sensor network and further analysis [39,
45–48]. Hence, when designing a specific sensor network for the target home, especially in
multi-occupancy scenarios, an efficient emulation that considers the real floorplan, the number
of residents, sensor density, and device resolutions is beneficial.

In multi-occupancy smart homes, data associating problem (i.e., identification annotation)
is one of the central problems for the sensor-based activity recognition technology [39, 81–83].
It refers to labelling the time-series sensor events by mapping them with the resident causing its
generation. A high-accuracy data-associating model is a prerequisite when leveraging mature
HAR techniques of single-occupancy households into multi-occupancy ones. Current identifi-
cation annotation solutions mainly rely on self-reporting [80] and camera-recording [45], where
the former is biased, and the latter would invigilate privacy. The capability for automatically
labelling the identification, hence, is significant for a practical smart home system. Researchers
tend to use wearable sensors to reduce the complexity of the problem because wearable sensors
can be utilized as the identification tag of different residents [47]. Another promising way is to
leverage the real-time locating system (RTLS) to locate different residents when they are inter-
acting with the environment. RTLS is a rising technology for detecting both the location and
identification of the target, where the target could refer to an item, a person, or a vehicle [84,
85].

In this chapter, based on the RTLS-based approach, which is utilized to annotate sensor
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events with identifications, different localization resolutions are emulated in the proposed sys-
tem. To be specific, taking the automatic annotation problem as the desired context-aware
task, I explore the interaction dynamics between the sensor-based environment and multiple
residents by proposing the MoSen emulation environment. MoSen is designed to evaluate the
way in which different localization resolutions, number of residents, number of sensors, and
varying sensor deployments affect the performance of the pre-designed sensor network before
real deployment. In order to investigate the dynamics of annotation accuracy, MoSen takes
the multi-occupancy behaviour model, floor plan, sensor layout, and localization resolution as
input, and outputs a series of results of different combinations. With these results, practition-
ers or designers are able to get insights into sensor selection strategy with metric-based design
suggestions for the pre-designed sensor layout.

To be specific, by using real behaviour models and synthetic data, I emulate multi-occupancy
scenarios in households with 2 to 5 residents. Given the scarcity of multi-occupancy datasets
and difficulty in realistic data collectionwith existing technologies, especially during the COVID-
19 pandemic with social distancing, I generate synthetic multi-occupancy behaviour models by
modelling real single-occupancy datasets collected in real homes. The quality of the multi-
occupancy behaviour model is validated by comparing the performance between synthetic and
real double-occupancy datasets.

The main objective of this chapter is to offer an effective evaluation structure and feasible
sensor selection strategy for different smart homes. By comparing real and synthetic datasets, I
discuss potential challenges when adopting sensor-based activity recognition in different multi-
occupancy scenarios. The main contributions of the chapter are as follows:

• I propose MoSen 1 to investigate the interaction dynamics between a sensor-based envi-
ronment and multiple residents;

• I provide an algorithm to generate synthetic multi-occupancy behaviour models and com-
pare the performance with the real dataset;

• I explore how the labelling accuracy is affected by different localization resolutions, the
residents’ quantity, sensor density, and varying deployment in multi-occupancy scenarios;

• I design a sensor selection strategy to balance the trade-off between deployment costs and
expected labelling accuracy in different homes, which accelerates the practical adoption
of sensor-based activity recognition in reality.

The rest of this chapter is organized as follows. Section 3.2 presents the related work, Sec-
tion 3.3 gives an overview ofMoSen system, and Section 3.4 describes the designmethodologies

1https://github.com/YutingZhan/MoSen
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applied in the proposed system. In Section 3.5, I evaluate the effect of localization device reso-
lutions, residents’ quantity and sensor density, respectively. With the analytical result, I provide
a case study in Section 3.6, then present discussions in Section 3.7, and the final conclusion in
Section 3.8.

3.2 Related Work

3.2.1 Activity Recognition

Human indoor activities are complex, diverse, and stochastic, making them challenging to de-
fine and quantify. A variety of advanced ubiquitous sensing technologies (e.g., wireless sens-
ing [86], wearable sensors [33], or ambient sensors [79]) have been adopted to collect human
indoor activity data [41, 42, 87, 88]. Human activity recognition is central to accelerating au-
tomation integration in smart environments [35]. Prior works have illustrated modelling human
activity patterns is valuable for providing personalized services [89] or context-aware interac-
tions with the resident [90, 91].

Currently, human activity can be recognized using two main approaches: vision-based [78]
and sensor-based [79]. Vision-based activity recognition utilizes cameras to capture or record
individuals’ motions [78], while sensor-based systems leverage wearable or ambient sensors
to understand the movements of the subjects and the interactions between people and the en-
vironment [80]. With the rapid development of computer vision techniques, HAR is mostly
dominated by vision-based approaches, which are further subdivided into RGB-camera-based,
depth-camera-based and point-cloud-based [92]. As one of the most common approaches,
RGB-camera-based HAR, which comprises background subtraction, human/object detection,
and human tracking [93], utilized still images or live videos to capture human actions. These
techniques have been well developed in simple activity recognition [94], however, they are lim-
ited due to the complexity of view-invariance and occlusion [56]. Different to traditional RGB
cameras, depth-camera-based HAR leverages deep information captured by depth sensors to
better handle illumination and privacy [94–96], which has remarkable progress in human daily
activities [97, 98] and fall detection [99] over the last decade. Point-cloud-based HAR leverages
a 3D points cloud, which is perceived by depth or LiDAR sensors, to perceive the geometric
information of scenes accurately while being robust to different lighting conditions [94, 100].
While the latter two vision-based approaches show promising performance in handling the com-
plexity of lighting, occlusion, and subject angle, the equipment requirement and cost hinder
their real adoption outside the laboratory [94]. Moreover, when it comes to multi-occupancy
smart home scenarios, these limitations become more burdensome, and residents’ privacy is at
considerable risk.
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While vision-based approaches are often privacy-invasive, the sensor-based systems, which
are highlighted in this chapter, are often more privacy-friendly and take advantage of their
pervasiveness [48]. Additionally, more andmore sensors are getting embedded into the ambient
environment, wearable electrical products, and intelligent appliances to aid with sensor-based
activity recognition systems. The multi-modal sensor data enables the system to receive rich
context information and to have the capability to process personalized behavioural analytics and
provide context-aware applications [33]. In this chapter, I mainly discuss sensor-based activity
recognition.

Multi-person Activity Datasets

The majority of research in human activity recognition has investigated the single-occupancy
scenario [43, 83], where only one resident lives in a single space. However, the real envi-
ronment is usually inhabited by more than one resident and even with pets, which is referred
to as multi-occupancy scenario [41] in this thesis. Multi-person activity recognition has less
investigation, as many practical challenges are yet to be overcome in the single-occupancy sce-
nario [39]. Recent pilot deployments demonstrate the applicability and adaptability of multi-
occupancy scenarios by using different machine learning algorithms [39, 45, 47]. There are two
publicly and widely-used multi-person datasets in current literature, the CASAS Datasets [42]
and the ARAS Datasets [41]. I compare the synthetic multi-person behaviour models with these
two real datasets to validate the quality of the synthetic model.

3.2.2 Real-time Locating System

The real-time locating system (RTLS) is a rising technology for detecting both the location and
identification of the target, where the target could refer to an item, a person, or a vehicle [84,
85]. Different positioning technologies have been investigated in the last several decades, and
these technologies perform a similar task with varying accuracy. I conclude 12 leading indoor
positioning technologies in Tables 3.1 and 3.2, comparing the positioning accuracy, coverage
range, cost, infrastructure complexity, network, localization method, and frequently-used con-
vention measurement of different technologies.

Applications for RTLS, also called location-based services (LBSs), have already been broadly
adopted in a variety of indoor location-aware scenarios [123, 124], from mapping and naviga-
tion services [125, 126] to human-robotics interaction [84]. In transitioning from a single-
occupancy scenario to a multi-occupancy environment, it becomes significantly important to
track each resident [127]. In Tables 3.1 and 3.2, I also conclude how these indoor positioning
technologies perform in the multi-occupancy environment, by listing their basic experimental
setting and locating accuracy. By tracking residents respectively in an efficient and accurate
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approach, the sensor events can be separated into different streams, as each resident would have
an independent data-driven profile that serves for further personalized interaction provided by
the smart environment.

Sensor-based Activity Recognition

Sensor-based activity recognition utilizes sensor readings to understand human activities. The
metadata emanated from multifarious sensors embedded in the living environment. These data
will be trained and learned by machine-learning or deep-learning algorithms [48]. In this thesis,
I leverage human activity datasets from real homes deployed with different ambient sensors
(i.e., motion sensor, temperature sensor, light sensor) [41, 42].

Trajectory with identification

Recent works have shown the capability of tracking residents’ trajectories with their identifica-
tion by non-camera-based systems [101, 105, 108, 109, 111, 128]. These classes of technologies
can be categorized into device-based systems and device-free systems. Device-based systems
use smartphones, smartwatches, or other wireless tags embedded into the human body. These
extra devices will be leveraged to identify different individuals [46, 87, 109, 119, 129]. Device-
free system depends on wireless signals by analyzing the signal patterns from the breathing or
heartbeat to perform identification [45, 88, 130].

Trajectory and Activity Recognition

The real-world experiment conducted by Nguyen et al. [131] emphasized the applicability of
modelling complex activities from indoor human trajectories. Their work also demonstrates
the feasibility of recognizing activities from new trajectories [131] by applying the hierarchical
hiddenMarkovmodel (HHMM).Wilson andAtkeson [132] have demonstrated that localization
accuracy and activity recognition can be beneficial to each other, especially in multi-occupancy
environments. Lu and Fu [133] provide more fine-grained outcomes in a single-occupancy
scenario to illustrate the possibility of location-aware activity recognition. These works on
location-based activity recognition validate the feasibility of leveraging residents’ locations to
annotate the time-series sensor events.

3.2.3 Significance of Data Annotation

Recent advances in machine learning and deep learning accelerate sensor-based activity recog-
nition but most of them require annotated datasets [48]. The quality of labels extends a signifi-
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cant impact on the performance of machine learning models. However, collecting sensor data
with ground-truth labels (i.e.,identification, activity) is still challenging, especially in longitudi-
nal monitoring scenarios. Currently, ground-truth labels are obtained either from a resident’s di-
ary [134] or vision-based recording techniques [45]. In order to simplify the annotation process,
some researchers also designed a simple graphical user interface (GUI) to help residents finish
their diary reports [41]. However, this can be tedious, time-consuming, and inaccurate. Unlike
the diary-based technique, the vision-based recording is unobtrusive and precise, incorporates
significant privacy concerns and needs extra manual inputs. The capability of automatic anno-
tation, hence, is the central primitive when building each resident’s individual activity profile.
Hamm et al. [135] have presented a flexible framework for combining heterogeneous sensory
modalities with classifiers for sequence labelling automatically.

In this thesis, I am interested in the identification labelling for time-series sensor events and
leave activity labelling for future research. Previous works (as listed in Section 3.2.2) have
already demonstrated the capability of a trajectory to identify persons. Hence, in the proposed
MoSen system, I leverage these identified trajectories to annotate sensor events automatically
and instantly by integrating residents’ respective locations and the sensor layout. For instance,
in a 4-person scenario, where there are four residents in the home, the location information
(refers to four respective location points) and the sensor layout are known, the proximity be-
tween each location point and the triggered sensor will be compared and the nearest location
points from that sensor would be selected. Such a solution mainly depends on the accuracy
of the localization techniques (as details are shown in Tables 3.1 and 3.2) and ambient-sensor
density. I discuss the effects of different localization resolutions in different sensor layouts in
Section 3.5.

3.2.4 Synthetic Sensor Data Generation

In order to protect users’ privacy and increase data sharing, synthetic data generation has been
developed as an alternative tool among data scientists [136, 137]. The generated data preserves
the required statistical features as the real data in a non-adversarial setting and is hardly distin-
guishable from the real data when the generation structure is mandated by an adversarial net-
work [138]. Effectively generating synthetic data can augment the labelled data and compensate
for the data scarcity when the availability of labelled data is constrained [139]. Especially for
sensor-based activity data, where data collection for even single-occupancy scenarios is low-
fidelity, there are more challenges posed in multiple occupancy scenarios. The aforementioned
gap demonstrates the importance of synthetic sensor-data generation in the multi-person setting.

Recent works on Generative Adversarial Networks (GAN) have demonstrated their capabil-
ity in generating different types of data, from image generation [140, 141], text generation [142,
143], music composition [144], and time-series sensory data generation [145]. The research
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published by [146] employed hidden Markov models (HMMs) to generate realistic synthetic
smart home sensor data. The authors used data similarity measures to validate the realism of
generated data, which are not random but preserve the underlying patterns or structures of the
real data. In the experiment of this chapter, I compare the performance of the synthetic multi-
person behaviour models with the real datasets to validate the effectiveness of the synthetic
models.

Pre-Processing

Multiple Real Single 
Occupancy Datasets

Multi-Occupancy Behavior Model Sensor Layout

Simulating

Best route

K
ey

 P
ro

bl
em
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om
at
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Realistic Route

Synchronize

Trajectory Generation
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Figure 3.1: An overview of the MoSen system. Multiple single-person datasets are learned
and utilized to generate synthetic multi-person datasets. Occupants’ trajectories are based on
the sensor-triggering list. Detected trajectories simulate the localization devices to locate the
occupants. Automatic labelling analysis is based on these trajectories and the original sensor
event list.

3.3 System Overview

The design of MoSen system is motivated by a need to accelerate the practical implemen-
tation of sensor-based activity recognition technologies in multi-occupancy settings. MoSen is
adaptable to different customized indoor environment. Smart home designers or practitioners
can leverage the analytical result of their pre-design sensor network in the specific context-
aware task to better balance the trade-off between the deployment cost and system performance.

Figure 3.1 shows an overview of MoSen system in solving the identification annotation
problem, which is one of the central problems for sensor-based activity recognition in multi-
occupancy smart homes [39]. It refers to labelling the identifications of the time-series sensor
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events by mapping each sensor event with the resident causing its generation. In this chapter,
the identification annotation problem is handled by leveraging the Graph and Rule-Based Al-
gorithm (GR/ED) proposed in [127], which was designed to track individuals in an ambient
sensor setting. The core idea is that individuals trip sensors when they move from one location
to another. Sensor events will then be separated into different streams by leveraging human
trajectory or location information with the nearest neighbour standard filter (NNSF) [147], a
classical data association method. To achieve the required labelling accuracy of identifications
for time-series sensor events in the multi-occupancy environment,MoSen can additionally pro-
vide a sensor selection strategy that fits the user’s requirements while optimizing the number
of sensors and their placement (hence the installation cost) to achieve the highest labelling ac-
curacy.

MoSen platform can emulate this annotation process with different sensor settings for di-
verse pre-designed smart homes. The platform assumes that the sensors provide only the sen-
sor events without considering how heterogeneous or multi-modal sensing environments are
meshed and combined. In a practical setting, the sensor event is recorded when a sensor is
triggered. MoSen emulates triggering sensors by building realistic single-person activity pat-
terns. In this way, I can add different representative activity patterns into MoSen to simulate
multi-resident scenarios, noted as the multi-occupancy behaviour model in Figure 3.1. Due
to the stochastic nature of my choices and the heterogeneity of chosen single-person datasets,
residents who contribute to each activity pattern might have different backgrounds, habits, and
daily routines.

I then leverage Dijkstra’s algorithms [148] to emulate and generate each resident’s daily
trajectory. These trajectories are utilized as ground-truth trajectories of residents. Normally
distributed noise, depending on the different resolutions of positioning technologies, is added
to the ground-truth value to generate a new trajectory that emulates how localization devices
work. This noise-added trajectory is referred to as the detected trajectory. Labeling accuracy,
in this chapter, is defined as how detected trajectory from different sensor networks affects the
identification annotation process.

With MoSen, by combing the real residents’ activity pattern and floorplan, every multi-
occupancy house can be emulated and evaluated before deploying a real sensor system, which I
believe can accelerate the practical utility of sensor-based activity recognition systems in smart
homes.
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3.4 System Design Methodology

3.4.1 Dataset Description

In sensor-based activity recognition, multi-modal sensor readings are collected and represented
as time-series data to describe human indoor activities. The dataset contains a series of sensor
events ordered by time. Each sensor event is recorded when the respective sensor is triggered
or activated when it is touched or walked around by residents. In this chapter, I choose two
widely-used published datasets in the analysis, CASAS datasets [42] and ARAS datasets [41].

CASAS datasets

TheCASAS group collected human activity datasets from theWSU smart apartment testbed [42].
Activity labels are annotated in CASAS datasets with respective start and end times, via a hand-
written diary. The majority of datasets represent indoor activities as a series of sensor events,
which contains the event timestamp, the sensor name, the sensor state and the activity label.
Each sensor event should at least contains the following details: [Timestamp, Sensor ID, Sen-
sor Status, Activity Label].

In this chapter, five single-occupancy testbeds chosen from CASAS datasets are leveraged
to generate the synthetic multi-person behaviour model. These five testbeds are annotated as
hh120, hh122, hh123, hh125, hh126 [79]. Details and properties of them are shown in Ta-
ble 3.3. And the relations between these testbeds and synthetic multi-occupancy datasets are
demonstrated in Table 3.4. Activity labels contained in single-occupancy testbeds include: bed-
toilet transition, cook, eat, enter the home, leave home, personal hygiene, phone, relax, sleep,
work.

Testbed Timespan Number of Sensors
D L LS M MA T Total

hh120 2012.1.28-3.31 3 7 15 11 4 4 44

hh122 2013.4.1-4.30 4 0 24 19 5 5 57

hh123 2013.3.2-4.1 2 0 14 4 10 6 36

hh125 2013.3.1-4.10 2 0 0 15 0 3 20

hh126 2013.8.1-9.6 0 0 0 15 0 0 15
”D” indicates magnetic door sensors; ”L” indicates light switches;
”LS” indicates light sensors; ”M” indicates infrared motion sensors;

”MA” indicates wide-area infrared motion sensors; ”T” indicates temperature sensors

Table 3.3: Details of the five CASAS single-occupancy testbeds
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Multi-occupancy Model Space Size Relative Single-occupancy Dataset

2-Person Scenario 12.5 m ⇥ 8 m hh120, hh122

3-Person Scenario 16.5 m ⇥ 8 m hh120, hh122, hh123

4-Person Scenario 16.5 m ⇥ 8 m hh120, hh122, hh123, hh125

5-Person Scenario 20.5 m ⇥ 8 m hh120, hh122, hh123, hh125, hh126

Table 3.4: Correlation between real single-occupancy testbeds and synthetic multi-occupancy
behaviour model

ARAS datasets

Different from the CASAS group collecting the activity in the lab setting, the ARAS group
collected two pairs of residents’ daily activities in their real houses by recording the ground
truth labels with a designed Graphical User Interface (GUI) [41]. For each house, it consists
of 30 days of sensor reading in the form of a 22⇥86400 matrix for each day, where the first
20 columns (S1 - S20) refer to the binary sensor reading and columns 21 (P1) and 22 (P2) are
the activity labels for resident A and B. The activity labels, ranging from 1 to 27, represent 27
different activities. They are in order as follows:
going out, preparing breakfast, having breakfast, preparing lunch, having lunch, preparing
dinner, having dinner, washing dishes, having snack, sleeping, watching TV, studying, having
shower, toileting, napping, using internet, reading book, laundry, shaving, brushing teeth, talk-
ing on the phone, listening to music, cleaning, having conversation, having guest, changing
clothes, others.

The data example below presents how the ARAS dataset represents sensor status every sec-
ond and the activity labels of two residents.

Timestamp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 P1 P2

86398 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 2

86399 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 2

S1 to S20 indicate the sensor identification, and their statuses are shown in binary form, where 0 refers to
deactivated status and 1 refers to activated status; P1 and P2 indicate the activity label for Person A and Person

B, respectively. For instance, 12 represents ”watching TV”, and 2 represents ”going out”.

Format of Synthetic Datasets

Two aforementioned datasets [41, 79] illustrate two main variations of data representations in
the sensor-based activity recognition literature. In this chapter, further analysis of both datasets
requires me to integrate them in a uniform way. By this motivation, I define the format of the
synthetic dataset to include the critical information needed, as the sample data are shown as
follows:
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Timestamp P1 P2 P3 P4 P5

t1 S11 S12 S13 S14 S15
t2 S21 S22 S23 S24 S25
... ... ... ... ... ...

ti Si1 Si2 Si3 Si4 Si5

Timestamp refers to critical timestamps in the multi-person scenario, where critical indicates
that at least one sensor triggered in that second. This thesis also notes every critical sensor
activation as one sensor event. P1 to P5 represent five residents, respectively. Sin denotes the
sensor ID triggered at ti by the resident Pn. I leverage sensor activation annotated with effective
activity labels from CASAS and ARAS datasets to model resident activity patterns, which are
action-based behavioural models.

3.4.2 Data Pre-processing

Data pre-processing is responsible for unifying the format of the dataset from different sources.
I pre-process the public single-occupancy datasets, by developing an algorithm to capture the
critical timestamps for sensor status transition or activity transition, then format the data as
discussed aforementioned in Section 3.4.1.

Capturing Critical Timestamps

In CASAS datasets [79], sensor events are recorded in order with timestamps that sensors are
triggered. However, for the ARAS dataset [41], data is recorded every second, that is, the
dataset has 86399 lines which refer to a day with 86399 seconds. Capturing critical timestamps
for both datasets is the first step to uniform the data.

Defining the Start and End Point

Critical timestamps are important to investigate how the sensor events or activities transit. In
identifying the start or end points for sensor events, I leverage the last sensor fired representa-
tion [43], which means the last triggered sensor continues to retain its value as 1 and changes
to 0 when the next sensor is triggered. In the data format, the transition between Sin and Sin + 1

represents this information, that is, the sensor triggered by resident Pn is changing. And the
corresponding switching timestamp refers to critical timestamp.
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Area Size Floorplan Sensor Quantity
(Sensor Density)

Sensor Event
Occurrences

ARAS [41] 50 m2 1 bedroom, 1 bathroom,
1 kitchen, 1 living room

20
0.4 sensor/m2 187

2-Person
Scenario 100 m2 2 bedrooms, 1 bathroom,

1 kitchen, 1 living room
43

0.43 sensor/m2 190

3-Person
Scenario 118 m2 3 bedrooms, 1 bathroom,

1 kitchen, 1 living room
51

0.43 sensor/m2 253

4-Person
Scenario 132 m2 4 bedrooms, 1 bathroom,

1 kitchen, 1 living room
60

0.45 sensor/m2 420

5-Person
Scenario 150 m2 5 bedrooms, 1 bathroom,

1 kitchen, 1 living room
69

0.46 sensor/m2 565

Table 3.5: Descriptions of synthetic multi-occupancy models and the comparison with the
ARAS dataset

Smoothing

To obtain critical timestamps, I select switching time points when transitions occur. However,
this processing step includes both real activity switching time and noise values. The sensor data
is sampled every second. The high-density data includes several kinds of unexpected noise
values, e.g., a break in continuous activity, loss of data, etc. These noisy values should be
smoothed before the final mapping stage.

Mapping

By understanding and learning the relations between activities and sensors, I try to figure out
the dynamics of the system’s performance and the sensor layout.

3.4.3 Synthetic Multi-person Behavior Models

In this chapter, I leverage five different single-occupancy published datasets [79] to build syn-
thetic multi-person datasets. The occupants from each dataset will act as residents in the emu-
lated environment with their realistic activity data and learned patterns in different multi-person
scenarios.

Properties of the dataset

Table 3.5 illustrates the properties of several multi-occupancy scenarios and infrastructures’ de-
tail in respective emulated environments. The synthetic multi-person datasets I used for further
modelling contain information described in Section 3.4.1, consisting of important timestamps
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and sensor ID triggered by residents. Figure 3.2 shows the sensor activation list in the four-
person scenario. Four coloured lines represent four residents in the space, respectively.
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Time (hour of a day)
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Figure 3.2: Overview of sensor activation list in a four-person scenario, where the x-axis rep-
resents the time and the y-axis represents the sensor ID; lines with red, green, blue, and yellow
colours represent the lists of residents A, B, C, and D, respectively.

Validation of the methodology

In order to evaluate the quality of the syntheticmultiple-occupancy datasets and validatewhether
the proposed syntheticmethodology can represent characteristics of the real-environment datasets,
I compare the similarity between the ARAS dataset [41], a real two-person dataset, and the syn-
thetic two-person dataset. The ARAS dataset in ARAS(real) floorplan is defined as the baseline,
referred to Configuration I in Figure 3.3. Then I compare the synthetic dataset in the ARAS
floorplan (Configuration II), the ARAS dataset in the emulated floorplan (Configuration III),
and the synthetic dataset in the emulated floorplan (Configuration IV ) to the Configuration I.

To quantify the variation of localization resolution in different configurations, both labelling
accuracy (LA) and corresponding decreasing rate (DR) of the same annotation task are analyzed,
shown in Figure 3.3. I first investigate the similarity when using the ARAS (real) and synthetic
datasets in the ARAS (real) floorplan, as shown in Figures 3.3a and 3.3b. Even though the
synthetic dataset is stochastic and has no relation to the real dataset, it performs as well as the real
dataset under an identical layout for the annotation task. I then compare the performance when
the ARAS (real) and synthetic datasets with the same emulated floorplan, as the experiment
results shown in Figures 3.3c and 3.3d, which also exert similar performance in the same task.
This similarity demonstrates that the synthetic datasets I utilized for further analysis can provide
convincing explanations for the annotation task in this chapter.
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Figure 3.3: Similarities between four different configurations

3.4.4 Trajectory Generation

Based on the sensor activation versus time, I model the real trajectory by choosing optimal
paths between adjacent sensor activities. The detected trajectory is synthesized under the real
trajectory and the different localization resolutions.

Real Trajectory Generation

By leveraging the sensor activation lists with timestamps, the target resident’s locations can be
inferred by the sensor layout, as shown in Figure 3.4, and a series of location nodes would be
considered to generate the best route when a resident moves from one sensor to another. The
best route generated is utilized as real trajectories for residents in this chapter as people always
choose the shortest route when moving from one node to another.

The nodes include sensor locations and junction locations to avoid obstacles, as shown in
Figure 3.5. Sensors are attached to furniture or appliances that residents most frequently interact
with. Some important nodes are added in theHallway and Living Room as a transition point from
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Figure 3.4: The experimental space for the four-person scenario. Other multi-occupancy sce-
narios have similar settings.
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Figure 3.5: Sensor locations and bridge connections between nodes in a four-person scenario.
Sensors are attached to furniture and appliances that residents are most frequently interacted
with. Some important nodes are added in the Hallway and Living Room as the transition points
from one sensor to another sensor. Bridges represent how people will move from one sensor to
the nearby sensors.

Figure 3.6: Residents move and interact with the environment in a day using the shortest routes;
solid lines with red, green, blue, and yellow colours represent the trajectories of residents A, B,
C, and D, respectively.
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one sensor to another, which are referred to as junction locations. Bridges represent how people
will move from one sensor to the nearby sensors. If the number of nodes is not big enough, the
path will be intercepted by the walls. More nodes can result in a smoother moving path but
will increase computational cost. Given nodes layout and possible path connections (edges),
the bridge map can be graphed (in Figure 3.5). The bridge map includes all possible optimal
ways in the room to move from one activity (sensor) to another one. Finding the shortest route
between two sensors can be treated as a classic optimization problem. Several widely evolved
navigation algorithms exist for finding an optimal path in 2D environments (e.g., Dijkstra’s
algorithms [148], A* [149], and Depth First Search (DFS) [150]).

Dijkstra’s algorithm is a technique to find the optimal and shortest paths between two dif-
ferent nodes (i.e., starting point and destination point). To accelerate the calculation, amodified
Dijkstra’s algorithm is adopted to synthesize the resident’s real trajectory in this study. Set-
ting the nodes SL = {1, · · · , n}, the possible connections E = {1, · · · ,m} , the selection of
optimal path can be done in O (E + SL logSL) step for each selection. During the selection,
each edge should have one or multiple weights. The weights are used to evaluate the capacity
and priority of edges. In this work, the only considered parameter is the distance, without addi-
tional priority factors. Each path can be endowed with priorities depending on the specific case
to improve further. Figure 3.6 shows the emulated real trajectories based on four residents’
sensor activation lists, respectively.

Detected Trajectory Generation

The RTLS devices can provide the detected trajectory within the respective resolution[101,
105, 109, 111, 128]. The localization range and resolution of the facilities depend on the differ-
ent indoor positioning technologies [108]. After the real trajectory is generated, the possible
resolution is incorporated into the trajectory with a given device (sensor) performance. Assum-
ing the localization resolution is L and the possibility of each point in the error range being
identical, the error can be added as Equation 3.1.

(
x = xr + E · L cos ✓i
y = yr + E · L sin ✓i

(3.1)

where ✓i is the possible angle for sensor i from real location (xr, yr), (x, y) is the detected
location and E 2 [0, 1] is error factor.

In this study, the distribution of added error is assumed to be uniform in all locations of the
shooting range. Error factor E can be any value from zero to one with an identical possibility.
If the resolution of a particular device (sensor) has a specific pattern (e.g., semi-normal distri-
bution), the error factor E (x) should be controlled to have a changing possibility along with
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Figure 3.7: Emulated deviations (0.5-meter resolution) are added to the route for four residents.
Solid lines with red, green, blue and yellow colours represent the trajectories of residents A, B,
C and D, respectively.
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the distance from the sensor. If the sensor is attached to a wall, resulting in a sector detected
range, the detecting location is controlled in a corresponding direction.

Figure 3.7 shows a representative trajectory (L = 0.5 meter), demonstrating howMoSen em-
ulates localization devices to collect residents’ data in a day. It gives a straightforward insight
into how residents have different activity patterns that live in a single environment, which can
be quite intricate.

3.5 Evaluation

3.5.1 MoSen Implementation

Typical studies in multi-occupancy scenarios may consider two residents in the same space,
limited by costly devices, annotation problems, localization accuracy, or others. With the
MoSen platform, I investigate different multi-person scenarios by emulating independent res-
idents in different target sensor network. I then provide the sensor selection strategy for the
sensor network by balancing the trade-off between deployment cost and system performance.
The results of the experiments would inform real sensor deployment of the multi-resident smart
home.

Design strategy of multi-occupancy environment

Because of the scarcity of multi-occupancy activity datasets in the sensor-based setting, few
research studies consider more than two residents in a single space. Leveraging two real two-
person datasets, noted as ARAS [41] and CASAS [79], I validate the efficiency of the two-
person data generator in Section 3.4.3. I expand the generator and emulate multi-occupant
scenarios in households with 2 to 5 residents. The 5-person scenario is considered due to the
fact that the average person lives in a household of 4.9 people around the world [151].

MoSen platform is adaptable to different or customized indoor environments, and the criti-
cal inputs to the platform are the sensor locations in the target floorplan. In this evaluation, one
design strategy chosen for the increasing multi-person scenarios is to maintain similar layout
complexity and sensor density, only the number of bedrooms changes with the number of resi-
dents. Figure 3.4 shows the representative floorplan in the four-person scenario, and Table 3.4
demonstrates the space size of each scenario. Generally, every multi-person environment in
this evaluation consists of:
Living room, kitchen, laundry room, bathroom, hallway, bedrooms (corresponding quantity is
depending on the number of residents) and others.
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Integration

Synthetic multi-person datasets and multi-occupancy environments are integrated to emulate
residents’ indoor trajectories. The emulation idea is based on when people move between two
triggered sensors and would probably choose the shortest way from the current sensor location
to the next. This shortest way is referred to as the best route in this chapter, as discussed in
Section 3.4.4. I leverage these best routes as residents’ real trajectories, while the detected
trajectories emulate how different positioning resolutions of sensor networks track human ac-
tivities.

However, different positioning technologies with respective resolutions exert varying accu-
racy when these technologies locate residents in a real environment, which also has diverse de-
ployment costs [118]. For instance, when detecting human locations and trajectories, deviations
from the ground-truth values are caused by different resolutions. For example, Estimote [152]
announced their location beacons could achieve 1.5 meters accuracy, which means that the de-
tected location and their real location might be away from each other at most 1.5 meters. In
this chapter, with varying resolutions of different technologies (ranging from 0 meters to 10
meters), I add respective deviations to the best route and refer to the new trajectories as the
detected trajectories that are obtained by the distinct localization devices.

Automatic identification labeling

Providing personalized services to different residents is one of the most important applications
in multi-person smart homes. Profiling the resident’s activity patterns and recording what sen-
sors they have interacted with in their daily routines are the preliminary work in multi-person
activity recognition.

Automatic identification labelling is the central problemwhen I try tomodelmulti-occupancy
activity recognition based on ambient-sensor networks. One feasible solution is to use residents’
trajectories to label the triggered sensors by matching the location of the sensor and the resident.
The Graph and Rule-Based Algorithm (GR/ED) [127] and the nearest neighbour standard fil-
ter (NNSF) [153] are leveraged in this chapter to solve the annotation problem, as detailed in
Section 3.3. I compare the detected locations of all residents and the triggered sensor at every
critical timestamp. The triggered sensor, hence, would be assigned to the resident who has the
shortest straight-line distance. As illustrated in Section 3.4.4, in theMoSen emulation, the best
route represents the ground-truth locations of every resident, while the detected trajectories are
utilized in the realistic annotation process.
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3.5.2 Performance

In this evaluation, I choose the automatic identification annotation problem as the central task
to illustrate howMoSen platform evaluates the impact of the number of residents, the number of
sensors, positioning technologies, and different sensor layouts. MoSen can additionally provide
a sensor selection strategy that fits the user’s requirement while optimizing the number of sen-
sors and their placement (hence the installation cost) to achieve the highest labelling accuracy.
While the real datasets leveraged to model the synthetic multi-occupancy datasets have data for
more than one month (Table 3.3), only one-day data from the synthetic datasets are utilized in
further analysis.

Labeling Performance

Resolution (meters) 2-Person 3-Person 4-Person 5-Person

0.5 100% 100% 99.89% 99.64%

1 99.64% 99.62% 99.35% 98.68%

2 98.19% 98.39% 94.56% 94.03%

3 95.57% 93.88% 88.16% 86.71%

4 91.02% 87.61% 80.49% 77.61%

5 87.46% 82.52% 74.57% 70.86%

6 84.64% 78.66% 70.00% 65.83%

7 82.63% 75.58% 66.64% 61.74%

8 81.01% 73.33% 63.65% 58.07%

9 79.52% 71.42% 60.75% 54.99%

10 78.41% 69.95% 58.13% 52.12%

Table 3.6: The percentage of labelling accuracy in different scenarios by increasing the number
of residents, with different localization resolutions, from 0.5-meter to 10-meter localization
resolution.

In Table 3.6, I first compare the performance of automatic identification labelling in sev-
eral multi-occupancy scenarios. I use similar floorplans and sensor layouts to emulate multiple
residents living in a single space. It generally provides information about the selection of local-
ization devices when an application has a different demand on labelling accuracy. The labelling
accuracy can be improved with a smaller resolution, but the cost of devices will also increase.
Insights from this table could provide valuable information to designers or practitioners when
designing the actual sensor deployments. For example, in a 2-person scenario, at least a 4-meter
localization device is needed when a user requires a labelling accuracy higher than 90%, but in
a 5-person scenario, a 2-meter resolution is required to achieve the same-level accuracy.
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Figure 3.8: The effect of different localization resolutions on the automatic labelling accuracy
in the 2-person, 3-person, 4-person and 5-person scenarios, respectively.

Scenario Mean Distance (meter) Variance Transition Point Interval⇤

2-Person 1.6865 0.5305 3.0-3.1 meters

3-Person 1.7065 0.5278 3.4-3.5 meters

4-Person 1.6692 0.4337 3.0-3.1 meters

5-Person 1.6936 0.5714 3.2-3.3 meters
⇤Transition point interval refers to the interval that contains the highest decreasing point.

Table 3.7: Mean distance and variance for the sensor nodes distribution in several multi-
occupancy scenarios

Varying Localization Resolution

Different techniques have varying performances in localizing individuals, and localizing mul-
tiple residents simultaneously is challenging. In this experiment, I evaluate how the varying
localization resolutions affect the final labelling accuracy in multi-occupancy scenarios. In
each scenario, I implement the same activity sequence in the proposed floorplan but increase
the localization resolution. I increase the deviations of the residents’ trajectories and add more
noise to the best route. As shown in Figure 3.8, different declining sigmoid curves indicate how
the labelling accuracy decrease with increasing resolution.

Effect of Resident Quantity

In order to understand the decreasing trend of labelling accuracy in different occupancy scenar-
ios, I increase the number of residents in the same setting and investigate the change in labelling
accuracy. Figure 3.9 shows the overview of the labelling performancewhen increasing the num-
ber of residents; Figures 3.10a and 3.10b demonstrate the decline rate of the labelling accuracy
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Figure 3.10: Decline rate of automatic labelling in different scenarios.

for the four multi-occupancy scenarios, respectively. Labelling accuracy decreases when the
number of residents increases. It is worth noting that the highest points of decline rate in these
scenarios are all between 3 and 3.5 meters. The similarity between these four scenarios because
I utilize a similar sensor density for them to keep the same complexity of the sensor deploy-
ments. In other words, the highest point of decline rate depends on the sensor deployments.

Effect of Sensor Density

In the experiments, the four multi-occupancy scenarios use four different floorplans as I de-
scribed in Table 3.5, the number of bedrooms changes with the residents’ quantity. However,
I keep the same sensor density of these floorplans, as also shown in Table 3.5, the sensor den-
sity of four scenarios ranges from 0.43 to 0.46 sensors per m2. I also utilize mean distance to
compare the sensor density of four floorplans. The Delaunay triangle method [154] is adopted
to connect each sensor node with neighbouring sensor nodes, while the length of these con-
nections is leveraged to calculate mean distance. The distributions of the connections’ lengths
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are shown in Figure 3.11. After removing the outlier connection near the border, I calculate
the average length for these connections. This average length refers to mean distance. In this
setting, the same decreasing trends in all scenarios (shown in Figures 3.10a and 3.10b) indicate
the effect of the same sensor density (0.43-0.46 sensor/m2) of the floorplans. For instance, each
sensor occupied 2.3 m2 in the 2-person scenario on average, and the mean distance of nodes is
1.6865 meters, where the labelling accuracy decreases most dramatically changed during 3.0-
3.1 meters. Since other scenarios also have similar sensor densities (shown as mean distance in
Figure 3.11), the intervals of transition points for these scenarios are also similar. This impact
is significant when a smart home designer considers the potential sensor layout to better fit the
user’s requirements.

Distance with neighbor nodes (m)
0 1 2 3 4 5

Fr
eq

ue
nc

y

0

0.1

0.2

0.3

mean: 1.6865

(a) 2-Occupancy
Distance with neighbor nodes (m)

0 1 2 3 4 5

Fr
eq

ue
nc

y

0

0.1

0.2

0.3

mean: 1.7065

(b) 3-Occupancy

Distance with neighbor nodes (m)
0 1 2 3 4 5

Fr
eq

ue
nc

y

0

0.1

0.2

0.3

mean: 1.6692

(c) 4-Occupancy
Distance with neighbor nodes (m)

0 1 2 3 4 5

Fr
eq

ue
nc

y

0

0.1

0.2

0.3

mean: 1.6936

(d) 5-Occupancy

Figure 3.11: Distributions of the sensor connection length in four multi-occupancy scenarios.
The x-axis represents the distance between nodes (sensors), and the y-axis represents the fre-
quency of the corresponding distance between nodes.

3.6 MoSen’s Sensor selection Strategy

In sensor-based activity recognition, different sensing systems are proposed to monitor in-
door activities by leveraging various ambient sensors, which also have diverse performances.
Previous works [155, 156] have emphasized the significance of sensor selection in multi-device
environments (MDE). Dynamically selecting the best sensor for a specific activity recognition
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Figure 3.12: Requirements for localization resolution with the expected labelling accuracy,
when the labelling accuracy is 80%, 85%, 90%, 95%, respectively.

system is a typical approach developed for context-aware MDE [156–158]. These works are
mostly about body sensor networks (BSN), and proposed dynamic designing strategies in the
BSN environment. Generally, four requirements (namely cost, acceptance, accuracy, and pri-
vacy [159]) are considered for a practical activity recognition system. Realizing recommen-
dations on sensor selection for different smart homes is the key objective of the analysis to
achieve a better trade-off between user requirement, labelling accuracy, and system cost. With
MoSen, different sensor settings can be analyzed before the real deployment, and it provides
more potential choices to users as they might have different budgets.

Many researchers choose the sensor-based activity recognition system primarily due to its
non-obtrusiveness and privacy protection [48]. The trade-off between the remaining two factors
leaves an interesting but tricky balance to attain. The sensor configuration often depends on
the installation cost and sensor prices. I define sensor sensitivity to identify the way a sensor’s
location and interaction frequency with residents affect the labelling accuracy. This information
is valuable for choosing the best and the most cost-effective sensor network for the smart home
environment. In this section, I focus on identifying sensor sensitivity and recommendations on
the final sensor selection for a specific layout. I use a five-person scenario here as the case
study to illustrate the proposed sensor selection strategy. The insights from the case study are
extendable to other scenarios and different new floorplan and sensor layout.

64



CHAPTER 3. MOSEN 2022

0

0.
2

0.
4

0.
6

0.
81

1
2

3
6

7
8

9
13

14
15

16
20

21
22

23
24

28
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

48
49

50
51

52
55

56
58

59
60

61
65

66

Accuracy

Se
ns

or
ID

5m
A

ve
ra

ge
 v

al
ue

(a
)E

xa
m
pl
e
of
th
e
w
ay

ea
ch

se
ns
or
af
fe
ct
s
th
e
fin
al
an
no
ta
tio
n
ac
cu
ra
cy
;i
n
a
5-
pe
rs
on

sc
en
ar
io
w
ith

5-
m
et
er
re
so
lu
tio
n.

Th
e
re
d
lin
e
re
pr
es
en
ts

th
e
ov
er
al
la
cc
ur
ac
y,
co
m
pa
re
d
to
di
ff
er
en
ts
en
so
rs
’p
er
fo
rm
an
ce

(g
re
y
ba
rs
),
in
di
vi
du
al
ly
.

-3-2-1012

1
2

3
6

7
8

9
13

14
15

16
20

21
22

23
24

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
48

49
50

51
52

55
56

58
59

60
61

65
66

Se
ns
or
ID1m

2m
3m

4m
5m

6m
7m

8m
9m

10
m

""

10
0%

0

(b
)
Th
e
ef
fe
ct
of

al
ls
en
so
rs
in
a
5-
pe
rs
on

sc
en
ar
io
,f
ro
m
1-
m
et
er
to
10
-m
et
er
re
so
lu
tio
n.

Ea
ch

pa
tte
rn
-p
ai
nt
ed

bl
oc
k
re
pr
es
en
ts
th
e
nu
m
er
ic
al

di
ff
er
en
ce

co
m
pa
re
d
to
th
e
av
er
ag
e
pe
rf
or
m
an
ce

in
th
e
re
sp
ec
tiv
e
sc
en
ar
io
.T

he
gr
ey

bl
oc
k
in
th
e
co
rn
er
re
pr
es
en
ts
th
e
sc
al
e.

Fi
gu
re
3.
13
:E

ff
ec
ts
on

ea
ch

se
ns
or
to
ov
er
al
la
cc
ur
ac
y
in
th
e
fiv
e-
pe
rs
on

sc
en
ar
io
.

65



CHAPTER 3. MOSEN 2022

Identification annotation accuracy. The initial analysis of the specific layout (a five-
person scenario in this case study) is emulated in theMoSen system, where annotation accuracy
is regarded as one of the most important factors in the system. The related analysis has been
described in Section 3.5, and the results show how the localization resolution and sensor density
affect the accuracy. Figure 3.12 shows the requirement for localization resolution with varying
labelling accuracy, ranging from 80% to 95%, respectively. For the five-person scenario, if the
labelling accuracy is 80%, the localization resolution requirement should be at least 3.72 m or
more precise. When the accuracy changes to 90%, the resolution should attain at least 1.83m,
which has higher accuracy but is also more expensive than the former one.

Sensor individual effect. Each sensor is evaluated in order to identify the individual effect
on the integrated performance, as shown in Figure 3.13, and the x-axis represents the sensor
ID. With different localization resolutions, sensors might have different performances, and the
cumulative effect is shown in this figure. Each rectangle represents the sensor’s individual effect
under different localization resolutions. For example, Sensor 6 might have opposite effects
when the resolution is varying, but for sensor 14, all effects are positive. This cumulative result
leads to a more intuitive concept for sensor sensitivity. Some sensor IDs are absent here as they
were not triggered in the experiment.

Sensor sensitivity. A sensor’s effect is represented as sensor sensitivity, and recommenda-
tions will be provided based on sensor sensitivity and sensor cost, as well as the localization
resolution and labelling accuracy. Sensor sensitivity integrates the activity patterns of the resi-
dent and how frequently residents interact with a specific sensor. As shown in Figure 3.14, the
different radii of the circles represent different sensor sensitivities, where a larger radius allows
a larger detection area (with lower sensitivity).

Figure 3.14: Sensor sensitivity in a five-person scenario. A larger radius of the circle means
less sensitivity to the distance and allows it to have a bigger detection area, and vice versa.
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3.7 Discussions

3.7.1 Data Scarcity On Multi-occupancy Scenarios

Designing activity recognition systems for multi-occupancy scenarios has been challenging for
researchers. First, the complexity of human activity increases dramatically when there is more
than one person within the same environment. Different from the single-occupancy scene, the
interactions between residents introduce uncertainty when defining indoor activities. Second,
annotating the triggered sensor with corresponding identification and activity is challenging
in the multi-resident scenario. The lack of ground-truth values is deficient to the multiple-
resident with advanced machine learning or deep learning technologies. Third, data privacy is
a big concern when collecting real human data. Even for the sensor-based activity recognition
system, which does not invade privacy as severely as the vision-based systems do, there still is
a need to attain the trade-off between data utility and privacy. Fourth, there are still numerous
challenges that need to be overcome in the single-occupancy environment [39]. These gaps,
hence, impede the practical data collection on the multi-occupancy scenario.

3.7.2 Generality ofMoSen System

MoSen system is designed and built to investigate the multi-occupancy scenarios by generating
a synthetic multi-occupancy behaviour model based on real human activity patterns and emu-
lating these models in a virtual environment. I use collected datasets from real installations to
represent the activity patterns of individuals. However, available datasets often do not have a
direct interaction between residents. Due to the data scarcity of the multi-occupancy scene, the
synthetic method bridges the gap, and the analysis is valuable for the public to design a real
multi-occupancy scenario in the future. The strategies proposed in MoSen system can extend
to different floorplan, and initial analysis of each specific scenario provide designers on how to
better design a sensor-based system in balancing the cost and accuracy. I choose identification
labelling as the key question in this chapter and leave other parameters for future research.

3.7.3 Towards Practical Utility of Sensor-based System

Human activities are hard to model in a uniform way, especially when they have different back-
grounds, diverse habits, and varied activity performances [160]. The uncertainty from the spa-
tial and temporal difference also increases this difficulty [42]. In the multi-occupancy scenario,
activity recognition becomes more sophisticated and challenging with the increasing number of
residents. There is also a trade-off between the RTLS localization resolution and sensor costs.
Often, researchers in a lab setting prefer the best technology with the highest accuracy, while
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the accumulated cost is hard to afford in real home designs. Finally, the floorplans and furniture
are diverse between different homes, which results in highly diverse sensor layouts in a real en-
vironment. The proposed system enables reasonable evaluations and design recommendations
for each particular home.

3.7.4 Limitations of Vision-based System and Fusion of Multimodal Systems

In this chapter, the sensor-based system is highlighted due to the high privacy invigilation of the
vision-based system. However, when with the remarkable progress of the vision-based system
in the last decades, it faces similar challenges as the sensor-based one, the ability to recognize
human activity in multi-occupancy scenarios is limited [94]. The expensive computation cost
of continuous tracking by a vision-based system is another hinder when practitioners consider
it in real applications [161, 162]. The combination of vision-based and sensor-based systems is
another emerging topic. While these multimodal systems leverage the advantages of different
methods, the techniques of data synchronization [163] and fusion [164] of these multimodal
systems bring new challenges to the researchers [165–167]. Due to the data dimensionality,
acquired data are hard to process and the complexity of activity modelling will be increased.

3.8 Conclusions

Often, researchers in a lab setting prefer the best technology with the highest accuracy, while
the accumulated cost is hard to afford in real home designs. The floorplans and furniture are
diverse between different designs, which results in highly diverse sensor layouts in the real
environment. In this chapter, I presented MoSen, a framework for accelerating the real imple-
mentation of sensor-based activity recognition systems by analyzing the trade-off between the
overall system performance and cost. I investigated the multi-occupancy scenarios by emulat-
ing the synthetic multi-occupancy behaviour models, which are generated by real single human
activity patterns, in a virtual environment. The MoSen platform can extend to any floorplan or
sensor configuration. The initial analysis of different specific sensor configurations will pro-
vide the designers or practitioners with an effective sensor selection strategy. More quantified
results will be shown in future work.

In this chapter, I evaluate the efficacy of theMoSen platformwith an automatic identification
annotation task using experiments on synthetic datasets and show how the annotation accuracy
is affected by the number of residents, different localization resolutions, and sensor density.
Through the trace-driven simulations, the effect of each sensor is also analyzed. Then the sensor
selection strategy on the system is provided. Other context-aware tasks will be emulated in
future work.

68



Chapter 4

Privacy-Aware Human Mobility
Prediction via Adversarial Networks

As mobile devices and location-based services are increasingly developed in different smart
city scenarios and applications, many unexpected privacy leakages have arisen due to geolo-
cated data collection and sharing. User re-identification and other sensitive inferences are ma-
jor privacy threats when geolocated data are shared with cloud-assisted applications. Signif-
icantly, four spatio-temporal points are enough to uniquely identify 95% of the individuals,
which exacerbates personal information leakages. To tackle malicious purposes such as user
re-identification, I propose an LSTM-based adversarial mechanismwith representation learning
to attain a privacy-preserving feature representation of the original geolocated data (i.e., mobil-
ity data) for a sharing purpose [168]. These representations aim to maximally reduce the chance
of user re-identification and full data reconstruction with a minimal utility budget (i.e., loss). I
train the mechanism by quantifying the privacy-utility trade-off of mobility datasets in terms of
trajectory reconstruction risk, user re-identification risk, and mobility predictability. I report an
exploratory analysis that enables the user to assess this trade-off with a specific loss function
and its weight parameters. The extensive comparison results on four representative mobility
datasets demonstrate the superiority of the proposed architecture in mobility privacy protection
and the efficiency of the proposed privacy-preserving features extractor, where the privacy of
mobility traces attains decent protection at the cost of marginal mobility utility. The results
also show that by exploring the Pareto optimal setting, the proposed model can simultaneously
increase both privacy (45%) and utility (32%).

4.1 Introduction

Geolocation and mobility data collected by location-based services (LBS) [169], can reveal
human mobility patterns and address various societal research questions [170]. For example,
Call Data Records (CDR) have been successfully used to provide real-time traffic anomaly
as well as event detection [171, 172], and a variety of mobility datasets have been used in
shaping policies for urban communities [173] and epidemic management in the public health
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domain [174, 175]. From an individual-level perspective, users can benefit from personalized
recommendations when they are encouraged to share their location data with third parties or
other service providers (SPs, e.g., social platforms) [176]. Human mobility prediction based
on users’ traces, a popular and emerging topic, supports a series of important applications. For
instance, one of the prerequisites for a successful LBS-recommendation system is the ability
to predict users’ activities or locations ahead of time, tracking their intentions and forecasting
where they will go [177].

While there is no doubt about the usefulness of predictive applications for mobility data,
privacy concerns regarding the collection and sharing of individuals’ mobility traces have pre-
vented the data from being utilized to their full potential [30–32]. A mobility privacy study
conducted by De Montjoye et al. [29] illustrates that four spatio-temporal points are enough to
identify 95% of the individuals, which exacerbates the user re-identification risk and could be
the origin of many unexpected privacy leakages. Additionally, with increasingly intelligent de-
vices and sensors being utilized to collect information about users’ locations, a malicious third
party can derive increasingly intimate details about users’ lives, from their social life to their
preferences. Hence, a mechanism capable of decreasing the chance of user re-identification
against malicious attackers or untrusted SPs can offer enhanced privacy protection in mobility
data applications, as human mobility traces are highly unique.

In the past decade, the research community has extensively studied the privacy of geolocated
data via various location privacy protection mechanisms (LPPM) [178, 179]. Some traditional
privacy-preserving approaches (e.g., k-anonymity and geo-masking) have shown to be insuffi-
cient to prevent users from being re-identified [29, 180–182]. Differential privacy (DP), another
popular notion, is shown to be a limited metric for location trace privacy since temporal corre-
lations are not taken into account [30]. Erdemir et al. [176] also states that DP and k-anonymity
are meant to ensure the privacy of a single data point in time. In general, many DP for LBS
(DP-L) mechanisms [53, 183, 184] attempt to protect the user’s location instead of the user’s
identity, which is different from the problem’s scope of this thesis. More recently, some re-
lated works have successfully applied machine-learning- or deep-learning-based approaches to
explore effective LPPMs. Rao et al. proposed a model based on Generative Adversarial Net-
work (GAN) [185] to generate privacy-preserving synthetic mobility datasets for data sharing
and publication [54]. Feng et al. investigated human mobility data with privacy constraints via
federated learning, achieving promising prediction performance while preserving the personal
data on the local devices [186]. Though these works provide promising architectures to pro-
tect location privacy, the mobility data’s privacy protection and utility degradation have not
been thoroughly investigated, especially in reducing the chance of user re-identification. My
proposed model extends these machine-learning-based mechanisms and explores the privacy-
utility trade-off on mobility data in terms of declining the effectiveness of privacy inference
attacks while maintaining its predictability. Moreover, research on human mobility shows that
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Figure 4.1: Privacy protection in user’s location data collection and sharing. Users share their
daily traces with a trusted mobile network operator; these traces are aggregated with a privacy-
preserving mechanism and shared as a compressed data format; the compressed data should
allow utility inference and avoid privacy inference.

the predictability of users’ location trajectories or mobility, and the particular constraints of
users’ movements, are sufficient to reconstruct and/or identify anonymous or perturbed loca-
tions [187]. This specific confrontation makes the trade-off between mobility predictability and
users’ identity more challenging.

Consider a scenario, shown in Figure 4.1, where users share their daily traces to a trusted
mobile network operator, which then aggregates these traces in a privacy-preserving approach
and sends them to third parties or other SPs with/without users’ consent. These users may want
to minimize the risk of being re-identified and trajectory reconstructed by those who will access
these released data. However, they would like to keep receiving potential effective services
from SPs. Therefore, a privacy-preserving mechanism, which can release required information
for the services (i.e., utility) while features or patterns that facilitate full data reconstruction or
user re-identification are obscured (i.e., privacy), is beneficial. The compressed data encoded
by this privacy-preserving mechanism is freely accessed by SPs for the inference tasks, and SPs
are free to use any prediction algorithms of their choice.

To this end, I propose a privacy-aware adversarial network to train a feature extractor EncL
for mobility privacy, namely Mo-PAE. It is based on representation learning and aims to ease
data sharing privacy concerns from privacy inference attacks. Inspired by PAN (privacy ad-
versarial network) [188], I employ adversarial learning to better balance the potential trade-off
between privacy and utility. In contrast to PAN, which focuses on the privacy of images, the
proposed approach is designed for complex time-series data that exhibits spatial-temporal char-
acteristics. At the core of my architecture lies an auto-encoder (AE) and long short-term mem-
ory (LSTM) layers with three branches, corresponding to the three training optimization objec-
tives of the feature extractor EncL: i) to maximize the loss associated with the reconstructed
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output by generative learning, ii) to minimize the prediction loss using the learned representa-
tion from the EncL by discriminative learning, and iii) to minimize the percentage of users who
are re-identifiable through their trajectories by discriminative learning. I explore and quantify
the privacy-utility trade-off provided by Mo-PAE in terms of data reconstruction risk, user re-
identification risk, and mobility predictability. The results show that the proposed mechanism
achieves a better privacy level with the same utility loss and vice versa.

The contributions of this chapter are the following:

• I propose a privacy-aware adversarial network to train an effective feature extractor EncL
for mobility privacy, namely Mo-PAE 1;

• I report the analysis of Mo-PAE by a comprehensive evaluation of four real-world repre-
sentative mobility datasets;

• I provide an extensive analysis of different inference tasks and quantify the privacy and
utility bound of the target mobility dataset, along with a trade-off analysis between these
contrasting objectives;

• I compare my model with, i) a famous DP notion that developed on the idea from Geo-
indistinguishability [53] (namely GI-DP); ii) a state-of-the-art GAN-basedmechanism that
attempts to generate synthetic privacy-preserving mobility data (namely TrajGAN [54]);
iii) as well as the optimal LSTM-based inference models, and obtain favourable results.

The rest of this chapter is structured as follows: I review the related work in Section 4.2;
the proposed Mo-PAE is described in detail in Section 4.4; I describe the experimental settings
in Section 4.5; I demonstrate an evaluation of my mechanism over four mobility datasets with
baseline comparisons in Section 4.6; Section 4.7 reports an in-depth discussion of the experi-
mental setting; finally, I conclude the chapter with future work directions in Section 4.8.

4.2 Related work

4.2.1 Notions of Location Privacy

Diverse privacy notions, direct or indirect, for the LBSs have been proposed and evaluated in the
literature. In [53], various direct notions of location privacy and the techniques to achieve them
are examined and concluded, including but not limited to expected distance error, k-anonymity,
differential privacy (DP), and other location-privacy metrics. First, the expectation of distance
error reflects the accuracy when an adversary guesses the user’s real location in a location-
obfuscation mechanism by using the available side information. In [187], an optimal LPPM

1https://github.com/YutingZhan/Mo-PAE
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strategy and its corresponding optimal inference attack are obtained by formalizing the mu-
tual optimization of user-adversary objectives (location privacy vs correctness of localization).
Second, k-anonymity is the most widely used privacy notion for the LBSs [189]. These sys-
tems aim to protect the user’s identity, requiring that the attacker cannot infer the correct user
among a set of k different users. Third, DP [137] is an emerging notion initially formulated
in the context of statistical databases and aims to protect an individual’s data while publish-
ing aggregate information about the dataset. More precisely, a randomization mechanism M

gives ✏-differential privacy for all neighbouring datasetsD andD0, and the difference between
D and D0 is within a bound of e✏. One of the popular mechanisms to achieve DP perturb the
original query result using random noise that is calibrated with the privacy budget ✏ and defines
a global sensitivity for all neighbouring D and D0 [190]. The work in [191] reviews research
works done in differential privacy targeted toward location data from a data flow perspective,
including collection, aggregation, and mining. [53] proposed a Geo-indistinguishability notion
based on differential privacy and a planar Laplace mechanism. Significantly, different from
the systems in k-anonymity category aim at protecting user’s identity, DP mechanisms are in-
terested in protecting the user’s locations [53, 183, 184, 192]. Apart from three mainstream
approaches, the location cloaking mechanism tries to define the uncertainty region and measure
privacy by the size of the cloak and by the coverage of sensitive regions; the inaccuracy of
the sensing technology tries to achieve a certain level of privacy by increasing uncertainty, and
transformation-based approach tries to make user’s location invisible to the service provider.

On the other hand, indirect notions of location privacy arise with the emerging machine
learning-based mechanism, which assesses the privacy guarantee by measuring the effective-
ness of target inference attacks [193–195]. In general, for any LBS, their main privacy concerns
can be concluded in two categories. One is the attack on the user’s identity which can be re-
identified maliciously. For instance, even if the adversary is assumed to be unaware of the user
identity of a trace, they can infer user’s identity or additional sensitive information due to the
location information leakage based on publicly accessible background information. The other
attack is the one on user’s location while the adversary has legible access to user’s identity.
In this manner, user’s locations are sensitive, which could exert a significant impact on other
sensitive personal details, such as religious affiliation, sexual orientation, economic condition,
health status, and so on.

In this work, I am interested in protecting user’s identity as the privacy scope, which is similar
to the location privacy notion defined by the k-anonymity, and taking the real/distorted user’s
location as input for the personal recommendationmodel to provide contextual services for their
future travels. In general, DP paradigms have the most formal privacy guarantee than others,
however, they are not immune to inference attacks [196, 197]. I will also compare the proposed
model with one popular DP paradigm on location privacy to illustrate the ineffectiveness of DP
to the research question. More details on the privacy definitions are in Section 4.4.
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4.2.2 Location Privacy Preserving Mechanisms

An effective location-privacy preserving mechanism (LPPM) must consider three fundamental
elements: i). the privacy requirements of the users (namely, privacy gain); ii). the adver-
sary’s knowledge and capabilities; iii). and maximally tolerated service quality degradation
stemming from the obfuscation of true locations (namely, utility loss) [187]. The literature on
location privacy can be roughly classified into three categories: the design of LPPMs [198];
recovering actual user traces from anonymized or perturbed traces; the formal analysis and the
search for an appropriate location privacy metric that allows for the fair comparison between
LPPMs [187, 199]. Generally, typical LPPMs use some obfuscation methods - like spatial
cloaking, cell, merging, location precision reduction, or dummy cells - to manipulate the proba-
bility distribution of the user’s location. The most popular approach to protect location privacy
is to send a space- or time-obfuscated version of the users’ actual traces to the trusted or un-
trusted third parties [187]. Xiao et al. [200] investigate how to obtain location privacy under
temporal correlations with an optimal DP-based LPPM. Another mainstream approach tries to
issue dummy requests from fake locations to the services provider, the location privacy is hence
protected as these fake locations increase the uncertainty of the adversary about the users’ real
movements [187]. The other popular alternative utilizes mixed zones or silent periods to hide
users’ locations, as the adversary cannot link those who enter with those who exit the region
when several users traverse the zone simultaneously.

In general, any LPPMwould alter the location information, resulting in a severe distortion of
data. Therefore, designing an optimized privacy-preserving algorithm with constrained utility
degradation according to user privacy requirements is one critical dimension of LPPMs [198].
There is no way to optimally address location privacy issues for all types of location-based
systems, and the design of a specific LPPM requires carefully considering the application sce-
nario and the realistic privacy requirements of mobile users [201]. Hence, if a user prefers
high service quality rather than the concerns of privacy leakage, then a more flexible system
could be applied to guarantee service quality. The proposed model in this chapter, in this way,
can perform flexibly in application scenarios when users have different focuses on privacy or
service.

4.2.3 Privacy Preserving Techniques for Spatial-Temporal Data

Current privacy-preserving techniques for spatial-temporal data focus on two research streams.
One is the DP approach to grouping and mixing the trajectories from different users so that
the identification of individual trajectory data is converted into a k-anonymity problem [53,
200, 202]. For example, a recent Privacy-Preserving Trajectory Framework (PPTPF) [203]
applies the k-indistinguishability to anonymize trips for each user by condensing them into
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k � 1 trajectories and determining k � 1 anonymized clusters of trips.

The other stream focuses on synthetic data generation [204–207]. Synthetic data generation
methods have been extensively studied in recent years as a way of tackling privacy concerns of
location-based datasets. The majority of existing mobility synthesis schemes are mainly cate-
gorized into two approaches: one is a more traditional, simulation-based approach, while the
other is a more recent, neural network-based generative modelling approach that utilizes recur-
rent autoencoders and generative adversarial networks to produce realistic trajectories [208].
Simulation-based approaches generate mobility traces by modelling overall user behaviour as a
stochastic process, such as a Markov chain model of transition probabilities between locations,
and then drawing random walks, potentially with additional stochastic noise added, as demon-
strated in Xiao et al. [209]. These approaches require considerable feature engineering effort
and struggle to capture longer-range temporal and spatial dependencies in the data [210] and are
thus limited in their ability to preserve the utility of the original datasets. In contrast, the gener-
ative neural network approach synthesizes user mobility traces by learning via gradient descent
back-propagation, and then the optimal weights are utilized for decoding a high-dimensional
latent vector representation into sequences that closely resemble the original data. Such traces
can maintain important statistical properties of the original data while taking advantage of noise
introduced in the reconstruction process, to improve data subject anonymity. Huang et al. [205]
demonstrates the use of a variational autoencoder network to reconstruct trajectory sequences,
while Ouyang et al. [207] utilizes a convolutional GAN, but neither work directly makes a quan-
titative assessment of the extent of privacy protection that their algorithms provide [205, 207].
The TrajGAN by Rao et al. [54] is a state-of-the-art example of the generative trajectory mod-
elling approach, which quantifies its privacy protection by demonstrating a significant decline
in the performance of a second user ID classifier model on the synthetic outputs compared to
the original input trajectories. For these reasons, I use TrajGAN as a baseline for comparison.

My proposed model takes the neural network-based generative modelling approach, but dif-
fers from existing methods, where I utilize a combined, multi-task adversarial neural network
to simultaneously reconstruct trajectories, predict next locations, and re-identify users, from
the same learned latent vector representation. I seek an optimal trade-off between the three
tasks’ individual losses by optimizing a sum loss function with per-task weights, improving the
controllability of the relative utility and privacy of the outputs.
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4.3 Preliminaries

4.3.1 Generative Adversarial Network

Generative adversarial network, also known as GAN for short, is a popular machine learning
framework for estimating generative models G via adversarial process D, designed by Good-
fellow et al. in 2014 [211]. In general, GAN simultaneously trains generative models G and
discriminative modelD in the form of a zero-sum game. To be specific, considering the contest
operates in terms of data distribution, the generative model generates fake data based on real
data with distribution pg while the discriminative model distinguishes real from the fake one.
Typically, the objective of the generative model is to generate data as realistically as possible
to fool the discriminate model, while the objective of the discriminate model is to maximize the
probability of assigning the correct label to real samples and fake ones from G. Formally, the
two-player minimax game between D and G can be expressed as value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))] (4.1)

4.3.2 Differential Privacy

Probability

Outputf (D) f (D′)

Ratio bounded by
e!

M (D) M (D′)

Figure 4.2: Illustration of differential privacy definition with Laplace-distributed noise. M [D]
represents the probability of receiving a certain c give D; M [D0] represents the probability of
receiving a certain c giveD0; for every c, the ratio of Pr(M [D] = c) and Pr(M [D0] = c)must
be bounded by e✏.

Motivated by the increasing need for a robust, meaningful, and mathematically rigorous
definition of privacy, differential privacy is proposed by Dwork in 2006 [190].

Definition 1. Adjacent Databases: Database D and D0 are considered neighbours if they are
differed by only a single record.
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||D0 �D||1  1 (4.2)

Definition 2. Differential Privacy 1 [190]: A mechanism M [·] is ✏-differential private if f or
all possible output S 2 Range [M], and all adjacent databases D,D0.

Pr(M [D] 2 S)

Pr(M [D0] 2 S)
 e✏ (4.3)

Definition 3. Differential Privacy 2 [190]: A mechanism M [·] is (✏, �)-differential private if
for all possible output S 2 Range [M], and all adjacent databases D,D0.

Pr(M [D] 2 S)  e✏Pr(M [D0] 2 S) + � (4.4)

As shown in Figure 4.2, the ✏ parameter is the privacy budget and controls the privacy loss
when M [·] is run on the D. M [D] represents the probability of receiving a certain c give D;
M [D0] represents the probability of receiving a certain c give D0; for every c, the ratio of
Pr(M [D] = c) and Pr(M [D0] = c) must be bounded by e✏. A larger ✏ represents weaker
assurances of privacy. That is, the probability for M [D] is much higher than M [D0], which
means they are more distinguishable.

4.3.3 Laplace Mechanism

The Laplace mechanism is one of the most classic mechanisms developed based on differential
privacy. It takes a deterministic function f [·] of a database D and Laplace-distributed noise is
added to the resultML[D] to make it ✏-differential private.

Consider the private data x 2 D, the Laplace mechanism is defined as:

ML(D, ✏) = D + Lap(
s

✏
) (4.5)

The term s is the sensitivity of f [·], which represents the output of f [·] change when its input
changes by 1. As ML[·] is differentially private, it provides plausible deniability of the true
result, hence, larger noise brings better privacy protection, but a higher expense of accuracy
degradation.

There are other definitions of differential privacy. For example, the exponential mechanism
is able to provide differentially private protection to results whose responses are non-numeric.
The Gaussian mechanism, which is adding Gaussian noise instead of Laplace noise, only satis-
fies a weaker form of differential privacy, (✏, �)-differential privacy.
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4.4 Design of Mo-PAE

4.4.1 Definition of Important Terms

Mobility Trace

The raw geolocated data or other mobility data commonly contain three elements: user identi-
fiers u 2 U , timestamps t 2 T , and location identifiers l 2 L. Hence, each location record r
could be denoted as r(u,i) = [u, ti, li], while each location sequence S is a set of ordered location
records S(u,n) = {r(u,1), r(u,2), r(u,3), · · · , r(u,n)}, namely mobility trace of user u. Therefore,
given the past mobility trace S(u,n), the mobility prediction task is to infer the most likely loca-
tion ln+1 at the next timestamp tn+1 for the user u. The data fed into the proposed architecture
are a list of traces with a specific sequence length (i.e., SL). For instance, if the sequence length
is 10, that indicates each trace contains 10 history location records r, S10 = {r1, r2, r3, · · · ,
r10}, and SL = 10. In this thesis, I assume that different users’ mobility traces are collected
and aggregated (denoted as dataX) by trusted telecom operators or social platforms and shared
with third-party SPs.

User Re-identification

The user re-identification risk arises because of the high uniqueness of human traces [29] and
could be the origin of many unexpected privacy leakages. I assume each trace S is originally
labeled with a corresponding user identifier u, and the user re-identification is to infer the user u
to whom the target trace Sn = {r1, r2, r3, · · · , rn} belongs. I thereby leverage the user identifiers
u as the ground-truth values for the user identity classes. This identity information is what I want
to protect in the proposed adversarial network.

4.4.2 Problem Definition

Definition of Utility and Privacy

On the one hand, mobility datasets are of great value for understanding human behaviour pat-
terns, smart transportation, urban planning, public health issue, pandemic management, etc.
Many of these applications rely on the next location forecasting of individuals, which in the
broader context, can provide an accurate portrayal of citizens’ mobility over time and inform
the allocation of public resources and community services. Therefore, in this thesis, I focus
on the capability of mobility prediction (next location forecasting) and leverage the accuracy
of the prediction as an important metric for quantifying the data utility. On the other hand,
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with increasing intelligent devices and sensors being utilized to collect information about hu-
man activities, the traces also increasingly expose intimate details about users’ lives, from their
social life to their preferences. In this manner, the capability of user re-identification is impor-
tant to balance the risks and benefits of mobility data usage, for all data owners, third parties,
and researchers. I then leverage the efficient reduction of data reconstruction risk and user re-
identification risk as the privacy protectionmetrics. Moreover, research in [187] shows that the
predictability of users’ mobility, and the particular constraints of users’ movements, are suffi-
cient to reconstruct and/or identify anonymous or perturbed locations [187]. This confrontation
makes the trade-off between keeping mobility predictability and reducing the chance of user
re-identification more interesting. For instance, an adversary can re-identify anonymous users’
traces given the users’ mobility profile [212]; infer the users’ next activities from the frequency
of location visits [177]; even obtain the personal home or working address from the trajecto-
ries [213].

In this chapter, I design a model to protect location privacy regarding users’ identity and
data integrity while simultaneously minimizing the service quality (i.e., accuracy of next loca-
tion forecasting) degradation stemming from the obfuscation of true data. Specifically, users’
mobility traces are collected and fed into this proposed model, encoded as privacy-preserving
representations that allow third parties and other SPs freely access. At the same time, two built-
in adversaries, which try to achieve maximum accuracy in user re-identification and trace re-
construction during the adversarial training, are simulating the strong privacy adversaries that
can attain disclosed sensitive information and examine the quality of feature representations
instantly. Overall, the encoded privacy-preserving representations should retain as little user-
identifiable information as possible, as well as the data reconstruction information, to decrease
the user re-identification accuracy and increase the location obfuscation.

Hence, I summarize the Utility, Privacy I and Privacy II of the encoded feature representa-
tions as follows:

Utility (U ): the encoded representations should retain information aboutmobility predictabil-
ity (i.e., forecasting accuracy, higher accuracy indicates higher utility).

Privacy I (PI): the encoded representations should contain little information advantage to
the data reconstruction (i.e., more information loss in the reconstruction process); represented
as the distortion increment (i.e., Euclidean [214] and Manhattan distance [215]) between the
reconstructed data X 0 and the original data X .

Privacy II (PII): the encoded representations should contain little information advantage to
the user re-identification task (i.e., the user de-identification effectiveness); measured by the
degradation of the user re-identification accuracy.
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Privacy vs. Utility Trade-off

An effective LPPM must consider three fundamental elements: i). the privacy requirements
of the users (namely privacy gain); ii). the adversary’s knowledge and capabilities; iii). and
maximally tolerated service quality degradation stemming from the obfuscation of true locations
(namely, utility loss) [187]. There is an inherent trade-off between location privacy protection
and utility degradation [201]. That is, achieving a better level of privacy protection may require
sacrificing the service quality provided by the data. Such a trade-off is omnipresent in various
privacy protection mechanisms, especially in location obfuscation mechanisms. Higher privacy
protection is achieved when the probability of an adversary inferring the true location of the
user decreases, however, the result of a query based on the obfuscated location is significantly
different from the actual interest of the user. The privacy-utility trade-off, hence, needs to be
examined and analyzed to guarantee the efficiency of the privacy protection mechanism.

In this thesis, utility loss denotes the accuracy degradation after the proposed privacy protec-
tion mechanism is applied, and the privacy gain (in terms of PI and PII) quantifies the protected
privacy information. To be specific, a more obfuscated dataset will tend to perform better at
preserving privacy, but worse at preserving utility, and vice versa. Hence, monitoring these
two performance metrics in tandem allows users to select the optimal privacy-utility trade-off
for their use cases, given their hyperparameter selections. The Mo-PAE model is designed to
train a features EncoderEncL(X) that could convey more information on the utility but less on
privacy and investigate a better trade-off between them. More details will be discussed in the
following sub-section.

4.4.3 Mo-PAE Overview

The proposed privacy-preserving adversarial feature encoder on mobility data, denoted as the
Mo-PAE, is based on representation learning and adversarial learning and aims to ease data
sharing privacy concerns. Figure 4.3 presents the basic workflow of the proposed Mo-PAE. It
composes of three crucial units: data reconstruction risk unit (DRU), mobility prediction unit
(MPU), and user re-identification risk unit (URU).

Composition Units of Mo-PAE

I. Mobility Prediction Unit (MPU ):

The MPU unit is composed of three parts, the input part with the multi-modal embedding
of trace information, the sequential part with LSTM layers [216], and an output part with the
softmax activation function. As per the definition mentioned earlier, the traces in this chapter
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Figure 4.3: (a) Schematic overview of the proposed privacy-preserving adversarial architecture
(Mo-PAE), consisting of data reconstruction risk unit (DRU), mobility prediction unit (MPU),
and user re-identification risk unit (URU); (b) The baseline LSTM network for optimal classi-
fiers (Optimal-IMs).

are shown as location sequences S. First, the location identifiers l and timestamps t are con-
verted into one-hot vectors. I then employ LSTM layers to model the mobility patterns and
sequential transition relations in these mobility traces. As a prominent variant of the recurrent
neural network, LSTM networks exhibit brilliant performance in modelling the entire data se-
quences, especially for learning long-term dependencies via gradient descent [217]. Following
the sequential module, the softmax layer outputs the probability distribution of the prediction
results. This probability distribution is converted to the top-n accuracy metrics to illustrate the
unit performance.

II. Data Reconstruction Risk Unit (DRU ):

The DRU is the encoder EncL unit in reverse, also denoted as DecL, which is regarded as
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the first privacy discriminator P 1
D in the proposed architecture. It is designed to evaluate the

distance d(·, ·) (i.e., Privacy I) between the reconstructed dataX 0 and the original input dataX .
A malicious party is free to explore any machine learning model and reconstruct the data if they
have the shared extracted features f . I use a layer-to-layer reverse architecture of the proposed
encoder EncL to build the data reconstruction unit to act as a robust built-in adversary. To
compare with baseline models and keep the comparison in a line, I measure the distance d(·, ·)
between theX andX 0 by leveraging the Euclidean andManhattan distance as the metrics. Both
of them are widely used in location privacy literature [53, 176].

III. User Re-identification Risk Unit (DRU ):

The URU is regarded as the second privacy discriminator P 2
D in the proposed architecture.

The unit is composed of three parts, the input part with the one-hot embedding of user identity,
the sequential part with LSTM layers, and an output part with softmax function. First, the user
identity list is converted into one-hot vectors. Similar to the MPU, the URU also applies LSTM
layers to better extract the spatial and temporal characteristics of the context. A softmax func-
tion with a cross-categorical entropy loss function is applied to output a categorical probability
distribution of the user re-identification task. I then use the top-n accuracy of this classifier as
the metric of user re-identification privacy risk (i.e., Privacy II). The more accurately a clas-
sifier can re-identify the user when given a trajectory, the higher the risk of disclosing private
data. Same as P 1

D, P 2
D is designed as the built-in adversary to infer the ability of generated

features in protecting users’ sensitive information.

The overall architecture eventually learns to fool both built-in adversaries, P 1
D and P 2

D, while
maintaining mobility predictability. In this manner, both adversaries are assumed to be free to
access the exclusive feature representations and the entire encoder network, which allows them
to have the optimal decoder setting. I will discuss the effectiveness of two privacy inference
attacks in Section 4.6.3.

Overall Design

When three units train concurrently, the MPU is regarded as the utility discriminator UD,
while DRU and MPU act as two built-in adversaries and are regarded as the two privacy dis-
criminators, P 1

D and P 2
D, respectively. The built-in adversary has been used as an effective

adversarial regularization to prevent inference attacks, e.g. in the classification setting [218] or
in various GAN models [219] for privacy-preserving purpose. In the proposed mechanism, P 1

D

and P 2
D are simulating malicious SPs, who attempt to obtain sensitive information (i.e., max-

imize the accuracy of privacy inference tasks), while the encoder EncL is trained to produce
feature representations f to the advantage of UD but to the disadvantage of P 1

D and P 2
D, by

jointly optimizing the hybrid losses of the DRU, MPU, and URU simultaneously, during ad-
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versarial training. Therefore, in the Mo-PAE, the encoder EncL, and three discriminators UD,
P 1
D, P 2

D play a multi-player game to minimaximize the value function V (EncL, UD, P 1
D, P

2
D):

min
(EncL,UD)

max
(P 1

D,P 2
D)
V (EncL, UD, P

1
D, P

2
D) = Ex⇠X [logUD(EncL(x))]+

Ex⇠X [log(1� P 1
D(EncL(x)))] + Ex⇠X [log(1� P 2

D(EncL(x)))]
(4.6)

As described in Equation 4.6, I design a multi-task adversarial network to learn an LSTM-
based encoderEncL(X; ✓) with parameter set ✓ 2 ⇥, which can generate the optimized feature
representations f = EncL(X; ✓) via lowering the privacy disclosure risk of user identification
information and improving the task accuracy (i.e., mobility predictability) concurrently. Two
potential malicious privacy leakages fromURU and DRU, are attempted to retrieve sensitive in-
formation from the feature representations f . As built-in adversaries, they have full access to the
feature representations f and the entire encoder network with parameter set f = EncL(X; ✓).
In this manner, they have the optimal decoder setting. Hence, the notion of privacy (privacy
gain), is measured by the decline of the effectiveness of target inference attacks (i.e., user re-
identification attack and data reconstruction attack).

Details of Mo-PAE

I define the raw mobility data I want to protect asX , trained features asF , and reconstructed
data as X 0. Given mobility raw data X for P 1

D (DRU), the ground-truth label zi for P 2
D (URU),

and the ground-truth label yi for utility UD (MPU), I train the encoder EncL to learn the repre-
sentation F = EncL(X ; ✓E). I design a specific loss function, namely sum loss Lsum, for this
optimization process.

Specifically, when reconstructing the data X 0, a decoder DecL attempts to recreate the data
based on the features F , that is DecL(F ; ✓0D) : F ! X 0. This DRU, the first privacy discrim-
inator P 1

D, is trained as a built-in adversary and tries to achieve sensitive information as much
as possible. Hence, the DRU is primarily trained by minimizing the reconstruction loss LR:

minLR ) LR = d(X ,X 0) = argmin
F ;✓0R

kDecL(F , ✓0R)� Xk2 (4.7)

The URU, the second privacy discriminator P 2
D(F ; ✓0), is trained to re-identify to whom

the target trajectory belongs. It outputs a probability distribution of predicted user identifiers
among Z potential classes. Then in this privacy discriminator, the user re-identification loss LP
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is primarily trained to minimize, denoted as minLP :

minLP ) LP = argmin
F ;✓0P

ZX

i=1

zilog(P 1
D(F ; ✓0P )) (4.8)

TheMPU, the utility discriminatorUD(F ; ✓0), is trained to output a probability distribution of
the next location of interest, and this distribution has Y potential classes. Discriminative training
of UD maximizes the prediction accuracy by minimizing the utility loss LU concurrently with
minimizing the Lsum, denoted as minLU .

minLU ) LU = argmin
F ;✓0U

YX

i=1

yilog(UD(F ; ✓0U)) (4.9)

The overall training is to achieve a privacy-utility trade-off by adversarial learning on LR,
LU , andLP , concurrently. The encoderEncL(X ; ✓E) should satisfy high predictability (minLU )
and low user re-identification accuracy (max LP) of the mobility data when maximizing the re-
construction loss (max LR) in reverse engineering, where the training objective transformed
from Equation 4.6 can be written as:

minLsum = min
LU

max
LR,LP

(
XX

x=i

�
LU (fi) ,LP (fi) ,LR (fi)

�
) (4.10)

I use Equation 4.10 to guide the first version of Mo-PAE, denoted as Model I. In order to
fully investigate the range of trade-offs, I leveraged the Lagrange multipliers [147] as hyperpa-
rameters to control the privacy-utility trade-offs in the Mo-PAE, and this weighted-controlled
model is denoted as Model II. Accordingly, the optimization function of the training objective
is:

minLsum = min
LU

max
LR,LP

(
XX

x=i

�
�1LR (fi) ,�2LU (fi) ,�3LP (fi)

�
)

= ��1

�
maxLR (fi)

�
| {z }

Privacy I

+�2

�
minLU (fi)

�
| {z }

Utility

��3

�
maxLP (fi)

�
| {z }

Privacy II

= ��1kDecL(F)� Xk2 + �2(
YX

i=1

yilog(UD(F)))

� �3(
ZX

i=1

zilog(PD(F)))

(4.11)

where yi is the ground-truth label for Utility, zi is the ground-truth value for Privacy II ; �1, �2

and �3 are non-negative, real-valued weights, as the hyperparameters that control the privacy-
utility trade-off in the Mo-PAE.
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Algorithm 1: Training of the Mo-PAE (Model II)
Input :Mobility data X, real mobility prediction labels Y, real user identification labels Z, weights: �1,

�2, �3

Output: Adversarial Encoder EncL(X; ✓E , ✓R, ✓U , ✓P )
1 Initialize model parameters ✓E , ✓R, ✓U , ✓P ;
2 for n epochs do
3 for k = 1, · · · ,Kt do
4 1. Sample a mini-batch of mobility trajectories x, prediction labels y, identification labels z
5 2. Update ✓E with Adam optimizer on mini-batch loss Lsum(✓E , ✓R, ✓U , ✓P ,�1,�2,�3)
6 3. Update ✓R with Adam optimizer on mini-batch loss LR(f ; ✓R)(x,x̂): minLR

7 4. Update ✓U with Adam optimizer on mini-batch loss LU (f ; ✓U )(y,ŷ): minLU

8 5. Update ✓P with Adam optimizer on mini-batch loss LP (f ; ✓P )(z,ẑ): minLP

9 end
10 Update with the gradient descent on Lsum(✓E , ✓R, ✓U , ✓P ,�1,�2,�3): minLsum

11 end

As shown in the Algorithm 1, the gradient of the loss (i.e., ✓E , ✓R, ✓U , ✓P ) back-propagates
through the LSTM network to guide the training of the encoder EncL. The encoder is updated
with the sum loss function Lsum until convergence. It is tricky to investigate all possible weight
combinations practically, and I look for the optimal combinations through training [182] with
Equation 4.11 by brute-force evaluation. Then I approximate the required data utility reserved
and reformulate the optimization problem in Equation 4.11 as a maxima privacy optimization
problem.

min
EncL

max
(P 1

D,P 2
D)
V�!UD(EncL, P

1
D, P

2
D) = Ex⇠X [log(1� P 1

D(EncL(x)))]

+ Ex⇠X [log(1� P 2
D(EncL(x)))]

(4.12)

Additionally, another key contribution is the flexibility of the sum loss function Lsum, which
could be regulated to satisfy different requirements on privacy protection level and service qual-
ity. That is, different combinations of weights control the relative importance of each unit and
guide the overall model to find the maxima or minima given the specific trade-off choices.

4.5 Experimental Setting

4.5.1 Datasets

Experiments are conducted on four representative mobility datasets: Mobile Data Challenge
Dataset (MDC) [220], Priva’Mov [221], GeoLife [222], and FourSquare [223].

MDC: it is recorded from 2009 to 2011 and contains a large amount of continuous mobility data
for 184 volunteers with smartphones running a data collection software in the Lausanne/Geneva
area. Each record of the gps-wlan dataset represents a phone call or an observation of a WLAN
access point collected during the campaign [220].
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Dataset-City Bounding Box Record Counts Number
Latitude Longitude Train Test User ID POI

MDC-Lausanne 46.50 46.61 6.58 6.73 77393 19429 143 149
Priva’Mov-Lyon 45.70 45.81 4.77 4.90 62077 16859 58 129
GeoLife-Beijing 39.74 40.07 116.23 116.56 95038 24578 145 960
FourSquare-NYC 40.55 40.99 -74.28 -73.68 43493 11017 466 1712

Table 4.1: Overview of four mobility datasets after pre-processing. The bounding box repre-
sents the range of the considered locations/traces.

Priva’Mov: the PRIVA’MOV crowd-sensing campaign took place in the city of Lyon/France,
from October 2014 to January 2016. Data collection was contributed by roughly 100 partici-
pants, including university students, staff, and family members. The crowd-sensing application
collected GPS, WiFi, GSM, battery, and accelerometer sensor data. For this thesis, I only used
the GPS traces from the dataset [221].

GeoLife: it is collected by Microsoft Research Asia from 182 users in the four-and-a-half-year
period from April 2007 to October 2011 and contains 17,621 trajectories [222]. This dataset
recorded a broad range of users’ outdoor movements, including life routines like going home
and going to work and some entertainment and sports activities, such as shopping, sightseeing,
dining, hiking, and cycling. It is widely used in many research fields, such as mobility pattern
mining, user activity recognition, location-based social networks, location privacy, and location
recommendation.

FourSquare NYC: it contains check-ins in NYC and Tokyo collected during the approximately
ten months from 12 April 2012 to 16 February 2013, containing 227,428 check-ins from 1,083
subjects in New York City [223].

Once imported into the proposed architecture, each dataset was filtered and pre-processed
individually to derive their respective train and test sets illustrated in Table 4.1. I filter locations
to a bounding box defining a city or region of interest and then transform continuous GPS co-
ordinates by tessellating the space and encoding location as a discrete grid position to attain the
location identifiers (i.e., POI). In these spatial transformations, I convert the GPS coordinates to
the discretizing locations via the Geohash algorithm [224] with rectangular cells. For instance,
each bounding box defines the grid size of the interested region, and the grid granularity is 0.01
degrees, where each grid represents a 0.01 longitude ⇥ 0.01 latitude area.

4.5.2 Baseline Models

I. Optimal Inference Models (Optimal-IMs)

Optimal-IMs comprise three independent inference models, namely the data reconstruction
model, mobility prediction model, and user re-identification model. Each model has a sim-
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ilar layer design as the corresponding unit in the Mo-PAE, however, these three models are
completely independent and have no effect on each other. Unlike the Mo-PAE, which lever-
ages adversarial learning to finally attain an extracted feature representation f that satisfies the
utility requirements and privacy budgets simultaneously, the Optimal-IMs are only trained for
optimal inference accuracy at the individual tasks to characterize the original data.

II. LSTM-TrajGAN (TrajGAN) [54]

It is an end-to-end deep learning model to generate synthetic data which preserves essential
spatial, temporal, and thematic characteristics of the real trajectory data. Compared with other
standard geo-maskingmethods, TrajGAN can better prevent users from being re-identified. The
TrajGAN work claims to preserve essential spatial and temporal characteristics of the original
data, verified through statistical analysis of the generated synthetic data distributions, which
aligns with the mobility prediction-based utility metric in this thesis. Hence, I train an optimal
mobility prediction model for each dataset and evaluate the mobility predictability of synthetic
data generated by the TrajGAN. In contrast to the TrajGAN that aims to generate synthetic data,
the proposed Mo-PAE is training an encoderEncL that forces the extracted representations f to
convey maximal utility while minimizing private information about user identity via adversarial
learning.

III. GI-DP [193]

The principle of geo-indistinguishability (i.e., GI) [53], is a formal notion of privacy that protects
the user’s exact location with a level of privacy that depends on radius r, which corresponds to
a generalized version of differential privacy (DP). GI-DP is a mechanism for achieving geo-
indistinguishability when the user releases his location repeatedly throughout the day. It fulfils
desired protection level by perturbing the actual location with random noises and achieving an
optimal trade-off between privacy and utility (i.e., service quality). I re-implement the geo-
indistinguishability of optimal utility with graph spanner [193], namely GI-DP in this thesis, to
attain the released version data that satisfied the DP guarantees. I then train a series of Optimal-
IMs to evaluate the effectiveness of target inference attacks on the released version data in a
line to compare with the proposed mechanism.
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4.5.3 Training

Training of Mo-PAE

The main goal of the proposed adversarial network is to learn an efficient feature representation
based on the utility and privacy budgets, using all users’ mobility histories. In most experiments
in this chapter, the trajectory sequences consist of 10 historical locations with timestamps (i.e.,
SL = 10), and the impact of the varying sequence lengths is discussed in Section 4.7.2. After
data pre-processing, 80% of each user’s records are segmented as the training set and the re-
maining 20% as the testing set. I utilize the mini-batch learning method with a size of 128 to
train the model until the expected convergence. I take a gradient step to optimize the sum loss
Lsum (i.e., Equation 4.11) in terms of LR, LU , and LP concurrently. Meanwhile, the sum loss
Lsum is optimized by using the Adam optimizer. All the experiments are performed with the
Tesla V100 GPU; a round of training would take 30 seconds on average, and each experiment
trains for 1000 rounds.

Training of the TrajGAN

To provide a state-of-the-art machine learning-based model for comparison, I re-implement
the TrajGAN model described in [54] using the same hyperparameters, setting latent vector
dimension to 100, using 100 LSTM units per layer, a batch size of 256, utilizing the Adam
optimizer with learning rate 0.001 and momentum 0.5, and training for 200 epochs (where one
epoch is a pass through the entire training set). I train TrajGAN independently on the training
split of each benchmark mobility dataset and then use it to generate synthetic trajectories from
the test set. Then I train the proposed Mo-PAE on the same training data and use it to generate
a feature extraction from the same test data. Finally, I evaluate the performance of the user
re-identification unit and mobility prediction unit on the real and synthetic test sets generated
by TrajGAN and compare the changes in accuracy to assess the relative utility and privacy of
the TrajGAN and Mo-PAE.

Training of the DP-GI

I re-implement the DP-GI model described in [193] using the default settings. That is, I set
epsilon ✏ = 0.5, dilation � = 1.1, the distance matrix dx is defined by Euclidean distance.
From [193], let X be a set of locations with metric dx, and let G(X,E) be a � � spanner of
X , if a mechanism K for X is ✏

�dG-private, then K is ✏dx-private. The dilation of G is calculated
as:

� = max
x6=x02X

dG(x, x0)

dx(x, x0)
(4.13)
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dG(x, x
0) � dx(x, x

0) 8x, x0 2 X (4.14)

I re-implement the GI-DP to attain the released version data that satisfied the DP guarantees.
I then train a series of Optimal-IMs to evaluate the effectiveness of target inference attacks on
the released version data in a line to compare with the proposed mechanism.

4.5.4 Metrics

I set Euclidean [214] and Manhattan distance [215] as the evaluation metrics for the DRU to
evaluate the quality of the reconstructed data X 0 generated from extracted features f . Both
distance metrics are widely used in location privacy literature [53, 176]. For instance, the work
introducing Geo-Indistinguishability [53] utilizes a privacy level that depends on the Euclidean
distance. Euclidean distance gives the shortest or minimum distance between two points. In
contrast, Manhattan distance applies only if the points are arranged in a grid, and both defini-
tions are feasible for the problem I am working on. Note that these two distances have limited
capability in showing the quality of the reconstructed dataX 0, however, they intuitively capture
the differences between the original data X and the reconstructed data X 0.

For both MPU and URU, I leverage the top-n accuracy as the evaluation metric. The accu-
racy of the MPU is one of the most important factors in evaluating the utility of the extracted
feature representation f, where predictability of the f increases as much as it can during the
adversarial training. On the other hand, the competing training objective is to decrease the ac-
curacy of the user re-identification unit to enhance the privacy of f. The top-n metric computes
the number of times the correct label appears among the predicted top n labels. The top-n metric
takes n predictions with higher probability into consideration, and it classifies the prediction as
correct if one of them is an accurate label. The top-1 to top-5 accuracies are leveraged in this
chapter to discuss the performance of the proposed model.

4.6 Architecture Evaluation

In this section, I present the comparison results between the proposed Mo-PAE and three
baseline models under the same training setting. The evaluation in this section is mainly on
the trade-off between U and PII, as the main contribution of the Mo-PAE is to protect users’
identities, while I also consider the scope of users’ locations as an auxiliary measurement.
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4.6.1 Performance Comparison

I first compare the proposed models with the Optimal-IMs, TrajGAN, and DP-GI on four rep-
resentative mobility datasets, as shown in Table 4.2. The overall performance is evaluated in
terms of the utility level provided by the MPU and the privacy protection provided by DRU and
URU. TheModel I is the proposed architecture without applying the Lagrange multipliers (i.e.,
where each unit is weighted equally). The Model II is the one with Lagrange multipliers (i.e.,
�1, �2, �3 ) and different weights are given to units (i.e., �1 = 0.1, �2 = 0.8, �3 = 0.1 for the
results in Table 4.2). In this table, the sequence length of the input traces is 10, that is SL = 10.
I will discuss why I choose SL=10 and the impact of the SL in Section 4.7.

As I mention in Section 4.5.2, Optimal-IMs are trained without considering the privacy-
utility trade-offs; hence, they can be leveraged to explain the optimal inference accuracy achieved.
That is, before any privacy-preserving mechanism applies, the accuracy of the target or pri-
vate tasks with raw data. For instance, the accuracy of the Privacy II (0.9247 (MDC), 0.5643
(Priva’Mov), 0.6572 (GeoLife), 0.8780 (FourSquare)) demonstrates that an adversary can ac-
curately infer user identity from raw data before any privacy protection.

Different from Optimal-IMs, the other models consider privacy-utility trade-offs, and I mea-
sure privacy protection and data utility by the effectiveness of the inference units. First, for the
Privacy I, the distance indexes (i.e., ”Euc” and ”Man”) are leveraged to intuitively represent
the difference between the original data X and reconstructed data X 0, where a larger value in-
dicates numerical differences between X and X 0. For the distance index, I am interested in
the distance between each trace, hence, I consider the quantity of trace for datasetsXD and get
these distance indexes by averaging the corresponding record numbersND, that is (take ”Euc”
for example):

Euc(XD, X
0
D) =

qPND

i=1(xi � x0
i)
2

ND
, ND = N 0

D (4.15)

Different to the Privacy I, theUtility loss and Privacy II gain are in a percentage format (%),
compared with the accuracy of Optimal-IMs. To compare the trade-off between them more
intuitively, I list the ”Utility-PII trade-off” column, where ”trade-offs = Utility (% for loss) +
Privacy II (% for gain)”. Table 4.2 demonstrates that the proposed models, especially Model
II, outperform the TrajGAN and GI-DP across various datasets. For instance, with the MDC
dataset, the Model II achieves the best trade-offs when compared with other models, as the
utility loss is only 13.43% but with 65.51% privacy gain, while 46.32% utility loss and 20.32%
privacy gain with the TrajGAN, and 97.34% utility loss and 97.47% privacy gain with the GI-
DP. The extreme performance on the GI-DP illustrates that while the DP paradigm is a robust
privacy-preserving technique in protecting user’s location, it is not appropriate in protecting the
user’s identities.
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More intuitively, in the column of ”trade-off”, Model II achieves all the best trade-offs
among four datasets (52.08% (MDC), 24.48% (Priva’Mov), 34.36% (GeoLife), and 48.54%
(FourSquare)). Model I has worse performance than Model II, in general, but is still superior
to TrajGAN and DP-GI, where the latter two might even get negative trade-offs (i.e., TrajGAN
got -26.00% with MDC and GI-DP got -5.71% with Priva’Mov). Moreover, for the Priva’Mov
dataset, although the utility loss of the TrajGAN is 4.21% smaller than the Model II, both two
privacy metrics of the TrajGAN are worse than the Model II. Again, the proposed model has
better overall trade-offs, as 23.66% forModel I and 24.48% forModel II. The performance on
Geolife and FourSquare are similar but inverse, where the utility of the proposed model is better
than TrajGAN and with slightly weaker privacy preservation.

In summary, GI-DP always has the highest privacy gain among the four datasets, however,
the utility loss is also very high, resulting in inadequate and unexpected privacy-utility trade-
offs. This trend also shows that the DP mechanism is not an appropriate metric for the location
privacy of user’s identity, which is also in line with the conclusions from other related work [30,
176]. The comparisons between Model I and Model II also illustrate the importance of the
Lagrange multipliers, which provides flexibility to the Mo-PAE, enabling its application in
different scenarios and enhancing the privacy-utility trade-offs in this case.

4.6.2 Trade-off Comparison

In this section, I present the privacy-utility trade-off analysis between the proposedMo-PAE and
TrajGAN in terms of mobility prediction accuracy (i.e.,U ) and user de-identification efficiency
(i.e., PII). Figure 4.4 presents the trade-off comparisons of the four datasets, where the hollow
squares and hollow diamonds show the trade-offs provided by the proposedMo-PAE in SL = 5

and SL = 10, respectively. The solid points present the results of the TrajGAN under the same
experimental setting. As can be seen from these results, in all four cases, the synthetic dataset
generated by the TrajGAN is not Pareto-optimal. That is, the proposed Mo-PAE is able to
achieve a better privacy level for a dataset with the same utility value. Compared with the
TrajGAN, Mo-PAE improves utility and privacy simultaneously on four datasets. Especially
for the performance of MDC, the privacy improves 45.21% more than the TrajGAN, while
the utility also increases by 32.89%. These results illustrate that the Mo-PAE model achieves
promising performance in training a privacy-sensitive encoder EncL for different datasets.

After evaluating the superior performance of the proposed model, I discuss the privacy guar-
antee that Mo-PAE provided in terms of data reconstruction (PI, ”Euc” in Table 4.3) and user
re-identification (PII, privacy gain in Figure 4.5). As I mentioned in Section 4.2, the privacy
guarantee of Mo-PAE differs from that of DP paradigms and is given in the declined effective-
ness of inference attacks.
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Figure 4.4: Pareto Frontier trade-off analysis on four datasets. The hollow squares and dia-
monds present the results of the proposed models Mo-PAE. solid points present the results of
the TrajGAN. Blue colour means SL = 5. Black colour means SL = 10.

4.6.3 Privacy Guarantee Analysis: Effectiveness of Privacy Inference Attacks

In this section, I discuss the impact of Mo-PAE on the effectiveness of two privacy inference
attacks (i.e., PI and PII), respectively.

Effectiveness of Data Reconstruction Attacks - PI

Table 4.3 shows the impact of the proposedmechanisms on the data reconstruction accuracy(PI).
The ”Euc” in the table follows the definition in Equation 4.15. Overall, Model II performs
better than Model I in limiting the accuracy of data reconstruction regardless of the value of
weights. Take the result of the GeoLife dataset as an example,Model II-i achieves a bigger dis-
tance thanModel I (i.e., 0.4343 > 0.0057), while it still gets better utility (i.e., -9.94% > -17.9%).
Nevertheless, both Model I and Model II have effectively defended the data reconstruction at-
tack (MDC: 0.0697 > 0.0017 > 0.0000; Priva’Mov: 0.0453 > 0.0009 > 0.0003; GeoLife: 0.4343
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Settings MDC Priva’Mov Geolife FourSquare
�1 �2 �3 Euc Utility Euc Utility Euc Utility Euc Utility

Model I - - - - +0.0017 -30.27% +0.0009 -2.72% +0.0057 -17.9% +0.0069 -33.75%

Model II

i 0.1 0.8 0.1 +0.0697 -12.55% +0.0453 -2.71% +0.4343 -9.94% +0.7933 -1.64%
ii 0.2 0.6 0.2 +0.0791 -33.29% +0.0738 -10.72% +0.4889 -18.21% +1.2722 -50.50%
iii 0.3 0.4 0.3 +0.0889 -58.10% +0.0782 -16.56% +0.5220 -29.95% +1.9586 -60.71%
iv 0.1 0.6 0.3 +0.0822 -49.27% +0.0776 -10.28% +0.4717 -18.64% +1.4139 -57.40%

Table 4.3: Impact of Mo-PAE on the data reconstruction accuracy (PI) and relative utility loss
(U ) on four mobility datasets. I list Model I and four different settings of Model II’s weight
combinations to discuss the potential range of the trade-offs.
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Figure 4.5: Impact of Mo-PAE on the user re-identification accuracy (PII) and relative utility
loss (U ) on four datasets. The orange area represents the utility loss, while the light-green area
represents privacy gain. The dark-green area represents the trade-offs between utility achieve-
ment and privacy budgets. The x-axis shows five different model settings, and the y-axis shows
the trade-offs.

> 0.0057 > 0.0008; FourSquare: 0.7933 > 0.0069 > 0.0052), while only at the marginal cost of
mobility utility (MDC: -12.55%; Priva’Mov: -2.71%; GeoLife: -9.94%; FourSquare: -1.64%).
The data of the Optimal-IMs are in Table 4.2. I list four representative settings here to make a
comprehensive comparison of PII and U. From setting i to iv, one can expect more original data
features loss to result in a more significant utility loss. This trend is indeed the case with dif-
ferent weight combinations. However, as the results show, especially for setting i, the privacy
of the traces attains decent protection at the marginal cost of mobility utility.

Effectiveness of User Re-identification Attacks - PII

Figure 4.5 presents the impact of theModel II on the user re-identification accuracy(PII). In this
figure, I list five different settings, I to V (�1 = 0.1, over the range of �2 = {0.5, 0.6, 0.7, 0.8,
0.9}), respectively. The Zero line (i.e., y = 0%) in each sub-figure is leveraged to indicate the
original accuracy of the raw data (i.e., Optimal-IMs). The ”Privacy Gain Rate” (blue square
line) shows the effectiveness of the Mo-PAE in defending the user re-identification attacks.
That is, after applying Model II, the decline range of effectiveness of user re-identification at-
tacks. For instance, with theMDC dataset, in setting I, the effectiveness of user re-identification
attacks declines as high as 80%. At the same time, this high privacy protection is at the cost
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of nearly 55% of utility (orange triangle line). Things are better in setting V, where the Mo-
PAE can get 60% privacy protection only at the cost of less than 10% utility. The x-axis shows
five settings of the model, and the y-axis shows the trade-offs (i.e., trade-offs = privacy gain +
utility loss). The orange area represents the utility loss while the light-green area represents the
privacy gain when compared with Optimal-IMs. The dark-green area represents the trade-offs
between utility and privacy budgets.

In summary, these trade-offs are all positive in different model settings on four different
datasets. The performance on the GeoLife data is the best, while less than 20% utility loss but
more than 50% privacy gains. The performance on MDC and FourSquare also show promis-
ing privacy-utility trade-offs, especially for setting V on the FourSquare dataset, and both the
utility and privacy increase. The uniqueness of human mobility trajectories is high, and these
trajectories are likely to be re-identified even with a few location data points [29]. The results
emphasize that the concern of user re-identification risk could be alleviated effectively with the
proposed model.

In real applications, the trade-off of Mo-PAE is achieved continuously over time. New tra-
jectories will be encoded with the pre-trained encoder to attain respective feature representation
and utilized by SP for following task-oriented scenarios (no need to retrain). The pre-trained
encoder and discriminators are assumed to be updated offline within a fixed duration for best
performance purposes. Additionally, while the architecture focuses on specific application sce-
narios (i.e., mobility prediction), it could be applicable to different task-oriented scenarios.

4.7 Discussions

In this section, I further discuss the impact of the temporal granularity of traces, the varying
sequence length and weights on the composition units on the Mo-PAE performance.

4.7.1 Impact of Temporal Granularity

The timestamp is one of the essential components of the mobility trace, and different choices
on the temporal granularity affect the final performance of any dataset. Figure 4.6 shows the
impact of the varying temporal granularity on the proposed architecture. I present the top-1,
top-5, and top-10 accuracies for both utility and privacy dimensions. For instance, when tem-
poral granularity is 10-min, it indicates a location record r is taken every 10 minutes from the
raw data. When using more coarser temporal granularity, the number of points of interest de-
creases so does the difficulty of mobility prediction. However, the uniqueness of the trajectory
decreases due to ignoring many of the unique locations of each user, resulting in better privacy.
To summarize from Figure 4.6, the impact of temporal granularity on the Priva’Mov is mini-
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Figure 4.6: The effect of temporal granularity on the model performance of four mobility
datasets.

mal. In terms of utility (mobility prediction), Priva’Mov is the only dataset for which accuracy
decreases with increasing temporal granularity. This subtle decline emphasizes the trajectory
features only have a small change when varying granularity, in line with the university students’
mobility.

4.7.2 Impact of Varying Sequence Lengths

The performance of the utility discriminatorUD (MPU) and the privacy discriminatorP 2
D (URU)

exert a significant impact on the overall performance of the proposedMo-PAE. The trace length
is the most critical factor affecting these units’ performance. I use two representative datasets
(i.e., MDC and Priva’Mov) to present the impact of the varying sequence length on both dis-
criminators.

As shown in Figure 4.7, by changing the lengths of trace sequence SL from 1 (SL = 1)
to 50 (SL = 50), I observe that SL has a significant impact on different tasks’ accuracy (i.e.,
mobility prediction accuracy for UD and user re-identification accuracy for P 2

D) of two differ-
ent datasets. Overall, the impact in the MDC dataset is much higher than in the Priva’Mov
dataset. Comparing the Figures 4.7a and 4.7c, there is a much sharper increase on the MDC
dataset. More specifically, when the sequence length is increased from 2 to 20, the top-1 mobil-
ity prediction accuracy on MDC increases from 0.473 to 0.978 (i.e., +50.5%), while accuracy
on Priva’Mov increases from 0.918 to 0.959 (i.e., only +4.1%). Similarly, more rapid growth
appears in the user re-identification accuracy on MDC, which is +68.0%, while the increase for
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Figure 4.7: Mobility prediction accuracy and user re-identification accuracy change with the
trace sequence length (SL) in the proposed UD and P 2

D. The colour bars indicate the accuracy
from top-1 to top-5, the black texts indicate the top-1 accuracy, and the purple texts indicate the
top-5 accuracy. For instance, the top-1 mobility prediction accuracy on MDC with SL = 2 is
0.473, and the top-5 one is 0.802.
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Priva’Mov is only +30.8%. I conclude that the mobility predictability and user re-identification
accuracy of a dataset might have a special link. The mobility predictability of Priva’Mov is
very high, almost higher than 90%, but the user re-identification accuracy is always lower than
80%, which also means the uniqueness of trajectories in this dataset is low. This low unique-
ness suggests that the users in this dataset might share similar daily routes, which is reasonable,
as I know these trajectories are collected from students at the same university. For the MDC
dataset, when SL = 10, the user re-identification accuracy is relatively high, indicating that
the locations are more sparse in this dataset. However, the mobility predictability here is also
high, which emphasizes that this sparseness does not affect predictability. These phenomena
indicate that the deep training of MPU and URU might share similar extracted features, while
the proposed architecture attempts to extract features more suitable for mobility predictability
but less suitable for user re-identification.

I note that the varying trace sequence length not only exerts impacts on the model perfor-
mance but also has a significant influence on the computation time. For instance, the compu-
tation time at SL = 50 costs six times as much as that at SL = 5. The computation time also
varies between datasets. Hence, an appropriate choice of trajectory sequence length can avoid
time-consuming computation and achieve expected task inference accuracy. In this evaluation,
I place greater focus on the trace sequence lengths ranging from 5 to 10, which exhibit great
performance in both the UD and PD while also keeping a low computation time.

4.7.3 Impact of Varying Weights

As I discussed in Section 4.4.3, the sum loss function Lsum ofModel II is a linear combination
of LR, LU , and LP with different weights (i.e., Lagrange multipliers). I evaluate the influence
of different weights’ combinations (�1, �2, and �3) on the Model II, as the results shown in
Figure 4.8.

I compare the overall model performance in UD and P 1
D by fixing the �3 = 0, and vary the

other two multipliers by subjecting to �1 = 1� �2, as shown in Figure 4.8a. Figure 4.8b illus-
trates the effect between UD and P 2

D by setting the �1 = 0. It could be observed in both settings
that the utility increases with a larger �2, which means when the MPU is given more weight
in the Mo-PAE model, it would exert a positive impact on the data utility. I conclude that the
privacy-utility trade-offs could be tuned by varying these weights; the results in Figure 4.8 also
verify the effectiveness of the proposed adversarial architecture. It is noted that the balance of
three units is far more complicated than the balance of two. From the extensive experiment I
conducted, initialling �1 = 0.1, �2 = 0.6, �3 = 0.3 can guide the model to achieve the trade-off
most efficiently. However, as the experiment results show, there is no dataset-independent pri-
vacy interpretation for �1, �2 and �3, and I leave a more efficient approach using reinforcement
learning to initialise these hyperparameters for different datasets in future work.
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Figure 4.8: Varying weights can tune the privacy-utility trade-offs. The primary y-axis (dashed
line) represents utility, and the secondary y-axis (solid line) represents privacy. The x-axis
represents the value of the target �.

4.8 Conclusion

In this chapter, I presented a privacy-preserving architecture Mo-PAE based on adversarial
networks. The proposed model considers three different optimization objectives and searches
for the optimum trade-off for the utility and privacy of a given dataset. I reported an extensive
analysis of the model performances and the impact of its hyperparameters using four real-world
mobility datasets. The weights �1, �2, and �3 bring more flexibility to the proposed framework,
enabling it to satisfy different scenarios’ requirements according to the relative importance of
utility requirements and privacy budgets. I evaluated the framework on four datasets and bench-
marked the results against an LSTM-GAN approach and a DP mechanism. The comparisons
indicate the superiority of the proposed framework and the efficiency of the proposed privacy-
preserving feature extractorEncL. Expanding this chapter, I will consider other utility functions
for the proposed models, such as community detection based on unsupervised clustering meth-
ods or deep embedded clustering methods. In future work, I will leverage automated search
techniques, such as deep deterministic policy gradient algorithm and reinforcement learning,
for efficiency in searching for optimal weight combinations.
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Chapter 5

Privacy or Fairness? Characterizing
Spatial-Temporal Data Sharing
Techniques

Preserving the individuals’ privacy in sharing spatial-temporal datasets is critical to prevent
re-identification attacks based on unique trajectories. Existing privacy techniques tend to pro-
pose ideal privacy-utility tradeoffs, however, they largely ignore the fairness implications of
mobility models and whether such techniques perform equally for different groups of users.
The quantification between fairness and privacy-aware models is still unclear, and no defined
sets of metrics barely exist for measuring fairness in the spatial-temporal context. In this chap-
ter, I define a set of fairness metrics designed explicitly for human mobility, based on structural
similarity and entropy of the trajectories. Under these definitions, I examine the fairness of two
state-of-the-art privacy-preserving models that rely on GAN and representation learning to re-
duce the re-identification rate of users for data sharing. The results show that while both models
guarantee group fairness in terms of demographic parity, they violate individual fairness criteria,
indicating that users with highly similar trajectories receive disparate privacy gain. I conclude
that the tension between the re-identification task and individual fairness needs to be consid-
ered for future spatial-temporal data analysis and modelling to achieve a privacy-preserving
fairness-aware setting.

5.1 Introduction

Understanding human mobility based on location data from smartphones has become a fun-
damental part of urban and environmental planning in cities [210]. Through the collection
of these geo-traces, it has become possible for the scientific community and policy-makers
to model citizens’ daily mobility patterns using crowd-sensed car-share data [225], city bicy-
cles [226], and RFID transportation cards [227], or to build predictive algorithms to estimate
people’s flows [228, 229] and community structure [230]. However, location-based traces cor-
responding to human mobility, even at an aggregate level, have raised numerous privacy con-
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cerns [29, 180, 231].

In the past decades, the research community has examined various ways of ensuring the
privacy of mobility traces. Previous work ranges from Differential Privacy [200, 232], k-
anonymity [233] to information-theoretic metrics [234, 235]. More recently, Privacy-Utility
Trade-off (PUT ) models based on machine learning or deep learning techniques that aim to
optimize both privacy and prediction accuracy have been studied. These approaches can be
summarized as representation learning [205], GAN-based approaches [54, 207], reinforcement
learning [236, 237], etc. In all these works, researchers have shown that it is possible to design
and implement frameworks that enhance the privacy protection of individual trajectories while
reducing utility depreciation.

A dimension that has been vastly overlooked is whether privacy-preserving algorithms work
equally for all users or whether they could lead to unexpected consequences of protecting the
privacy of only a group of people. Indeed, as recent evidence from the broader machine learning
domain has shown, autonomous decision-making has shifted the systematic discrimination and
fairness against different groups in decision-making from people to algorithms [238, 239]. In
many applications, discrimination may be defined by different protected attributes, such as race,
gender, and religion, that directly prevent favourable outcomes for a minority group in societal
resource allocation, education equality, employment opportunity, etc [240]. Similarly, in the
context of spatial-temporal data, mobility demand prediction algorithms have been shown to
offer higher service quality to neighbourhoods with more white people [241]. However, in
such contexts, only a handful of recent studies exist that examine the fairness of location-based
systems [242–244], with little consensuses on how fairness should be defined and measured for
spatial-temporal applications.

In this work, I measure and evaluate the fairness of the privacy-preserving algorithms that
are applied to mobility traces. I seek to answer the research question as to whether the outcome
of the PUT models satisfies fairness. That is, whether these models preserve the privacy and
prediction accuracy of similar groups of users equally. In order to do so, I first posit a set of
metrics grounded on the broader fairness literature [245] formeasuring individual fairness based
on trajectories. I measure the similarity of users’ trajectories in terms of the structural similarity
of their heatmap images as well as the entropy of their trajectories. I then examine two of the
state-of-the-art privacy-preserving approaches, TrajGAN [54] and PAE [246] in comparison
with the original inference tasks that optimize only for privacy or for prediction. I evaluate
these models on two real-life mobility datasets: Geolife [247] and MDC [220]. The results
indicate that both PAE and TrajGAN models do not guarantee individual fairness; users with
similar trajectories might receive different privacy gain outcomes. The results of group fairness
show that there is no demographic disparity in the privacy and prediction outcome. However,
as I discuss this observation is highly reflective of the socio-cultural settings in that these traces
have been collected, and less of the by-product of the privacy-preserving models. In terms of
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individual fairness, I observe that the privacy-aware algorithms violate fairness criteria. More
specifically, I observe that for the users with similar trajectories even when the outcome of the
prediction task is similar, the privacy gain amongst those users is highly different, leading to
some users not advantaging from obfuscation as others do.

The contributions of this chapter are as follows:

• I offer a set of individual fairness metrics specifically defined based on mobility charac-
teristics that can help the broader research community in measuring fairness for spatial-
temporal applications.

• I examine the privacy-preserving algorithms and show their deficiencies in accounting for
fairness can lead to undesired consequences.

The rest of this chapter is structured as follows: In Section 5.2, I describe the previous works
in fairness in Machine Learning literature and give a background to the privacy methods for
spatial-temporal data. Section 5.3, I define a set of fairness metrics for spatial-temporal datasets.
Section 5.4 details the setup of experiments by describing the datasets I used in the analysis and
offering an overview of the privacy performance of the models I evaluated. In Section 5.5, I
present the results of the fairness analysis of the PUT models in terms of individual and group
fairness metrics. Section 5.6 discusses the limitation and implications of this study and lays a
future roadmap. Finally, Section 5.7 concludes this chapter.

5.2 Related work

5.2.1 Fairness in Machine Learning

Literature on fairness in machine learning tends to focus on the absence of any prejudices or
favouritism toward an individual or group based on their inherent or acquired characteris-
tics [248]. Most fairness research strives to avoid the decisionmade by automated systems being
skewed toward the advantaged groups or individuals. In [245], authors proposed a framework
for understanding different definitions of fairness through two views of the world: i)We are all
equal (WAE), and ii)What you see is what you get (WYSIWYG). The framework shows that the
fairness definitions and their implementations correspond to different axiomatic beliefs about
the world described as two worldviews that are fundamentally incompatible. The most adopted
metrics for fairness in machine learning are widely based on group-based fairness which is also
known as Statistical parity and Demographic parity [249]. These metrics aim to ensure that
there is independence between the predicted outcome of a model and sensitive attributes of
age, gender, and race. Variations of statistical parity exist, which concentrate on relaxation of
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this measure by ensuring that groups from sensitive attributes and non-sensitive attributes meet
the same misclassification rate (False Negative Rate, also known as Equalized Odds [250]), or
equal True Positive Rate (also known as Equal opportunity [250]).

In the context of mobility data and its applications such as equitable transportation, attention
has been mainly devoted to group fairness. Transportation equity heavily employs statistical
tests for equity analysis, which is appropriate for discovering unfairness [243]. Such metrics are
often defined based on census tract-level information which offers an aggregate demographic
characteristic of the residing population. Yan et al. define fairness in terms of region-based
fairness gap and assess the gap between mean per capita ride-sharing demand across groups
over a period of time. The two metrics differ from each other, as one is based on a binary label
associated with the majority of the sub-population (e.g., white) versus a continuous distribution
of the demographic attributes. To the best of my knowledge, the research of Yan et al. is the
only work in literature that offers a group-based fairness metric for spatial-temporal data.

On the other hand, individual fairness claims that similar individuals (with respect to a spe-
cific task) should be treated similarly with respect to that task. For example, in making hiring
decisions, the algorithm has to possess perfect knowledge of how to compare the ”qualifica-
tion” of two individuals. In most cases, the difficulty with individual fairness lies in the notion
of measuring similarity. For example, Yan uses the population and employment density of
each area of the city for achieving individual fairness in bike sharing demand prediction. The
difficulty again lies in the fact that there is often a lack of perfect knowledge to determine the
similarity in demand between two areas. In broader spatial-temporal data and application, the
definitions of individual fairness are almost non-existence.

In this work, I offer a set of individual fairness metrics defined based on the literature on
mobility.

5.2.2 Privacy Methods for Spatial-Temporal Data

Large-scale human mobility data contain crucial insights into understanding human behaviour
but due to their highly sensitive nature are hard to share in non-aggregated form. Decades of re-
search on privacy have examined various anonymous human trajectories [200, 232, 233]. Amo-
bility privacy study conducted by De Montjoye et al. [29] illustrates that four spatial-temporal
points are enough to identify 95% of the individuals in a certain granularity. More recently, PUT
models that aim to optimize both data privacy protection and data utility have been studied. In
these lines of work, researchers have focused on the objective of training neural network models
that optimize for reducing privacy leakage risk of individual trajectories while at the same time
minimizing the depreciation in the mobility utility. Various state-of-the-art models have been
proposed based on adversarial networks [54, 207], representation learning [205] and those of
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Reinforcement Learning [236, 237]. In this chapter, two PUT models that I selected for fair-
ness analysis are mainly focused on temporal correlations in time-series data and aim to reduce
the user re-identification risk (i.e., privacy) while minimizing the downgrade in the accuracy
of mobility prediction task (i.e., utility). I then describe the details of these two privacy-aware
spatial-temporal models:

TrajGAN [54]: it is an end-to-end deep learning model to generate synthetic data which
preserves essential spatial, temporal, and thematic characteristics of the real trajectory data.
Compared with other common geomasking methods, TrajGAN can better prevent users from
being re-identified. TrajGAN claims to preserve essential spatial and temporal characteristics
of the original data, verified through statistical analysis of the generated synthetic data distribu-
tions, which is in a line with the data utility assessment based on the mobility prediction task in
this work. Hence, I train a TrajGAN-based PUT model to evaluate the mobility predictability
and privacy protection of synthetic data generated by TrajGAN.

PAE [246]: it is a privacy-preserving adversarial feature encoder. In contrast to the Traj-
GAN that aims to generate synthetic data, PAE trains an encoderEncL that forces the extracted
representations f to convey maximal utility while minimizing private information about user
identities, via adversarial learning. It consists of a multi-task adversarial network to learn an
LSTM-based encoder EncL, which can generate the optimized feature representations f =

EncL(X) via lowering privacy disclosure risk of user identification information (i.e., privacy)
and improving the mobility prediction accuracy (i.e., utility) concurrently.

5.3 Fairness Definition and Metrics

In this section, I define the metrics for measuring fairness in spatial-temporal applications.

5.3.1 Formulation of the Problem

In this work, I measure and evaluate the fairness of the privacy-preserving algorithms that are
applied to mobility traces. I seek to figure out whether these models preserve the privacy and
prediction accuracy of similar groups of users equally. Both individual-based to group-based
fairness analyses are discussed.

I first introduce some basic definitions: individuals are labelled as u, if individuals ui and uj

are similar, that is ui v uj; sensitive or protected attributes are denoted as S; raw data without
sensitive attributes is denoted as X; Y is the ground-truth labels for a specific inference task
and Y 0 is the predicted one, which is the variant that depends on S and X . The true positive
rate (i.e., TPR, recall, or sensitivity) of each user is utilized to judge the performance of the
multi-categorical classifiers, which refers to the proportion who should be predicted accurately
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that received a positive result. In the mobility prediction task and user re-identification task of
the examined models, I use the TPR as the measure of the task accuracy.

5.3.2 Group Fairness

Group fairness [245] states that demographic groups should receive similar decisions, which
is inspired by the civil rights law in different countries [251]. To be specific, group fairness
argues that a disadvantaged group (in terms of the sensitive attributes) should receive similar
treatment to the advantaged group, that is:

P (Y 0 = 1|S = 0, Y = 1) = P (Y 0 = 1|S = 1, Y = 1) (5.1)

While S is not an input to the PUT models, it is possible that specific demographic groups
of users exhibit certain properties that could lead to a less favourable outcome for the models.
For instance, age and employment status can highly influence peoples’ day-to-day trajectory.
As an example, a user whose trajectory data is limited to his home and office location only
could be highly predictable by PUT models but also highly re-identifiable (low privacy gain).
This means the notion of group fairness in the context of this study is highly dependent on the
examined dataset. I elaborate more on this discussion in Section 5.6.

In order to quantify the group fairness in a more statistical approach, group fairness score
(i.e., GFS) are calculated by disparate impact for disadvantaged groups:

GFS = P (Y 0 = 1|S = advantaged, Y = 1)/P (Y 0 = 1|S = disadvantaged, Y = 1) (5.2)

5.3.3 Individual Fairness

Individual fairness [249] states that individuals who are similar, with respect to a specific task,
should be treated similarly (i.e., Pui v Puj when ui v uj) [252]:

P (Y 0|ui, S,X) = P (Y 0|uj, S,X) (5.3)

To measure individual fairness in the context of this work, I need two sets of definitions
corresponding to the similarity between users’ trajectories, and the similarity of the outcome of
the PUT models. I define each next:
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Similarity of Trajectories

Grounded on the literature onmobility [180, 230, 253], I define themeasuremetrics of trajectory
similarity based on the structural similarity index of mobility heatmap images and entropy of
trajectories.

Structural Similarity Index Measure (SSIM): SSIM is originally designed to quantify
image quality degradation caused by processing such as data compression or by losses in data
transmission, which leverages the differences between the reference image and the processed
image [254]. To apply it in this work, heatmap images are constructed from the raw geo-
located data with the methodology proposed by [230]. Figure 5.1 shows some sample heatmap
images with spatial granularity coarsening from left to right from 50 meters to 900 meters.
These heatmap images structurally represent mobility features extracted from mobility traces,
which use pixel intensity to encode the frequency of the visit spent in a given area; hence, the
brighter pixels denote the more frequently visited locations of the user. SSIM has been shown
to be a well-suited metric to compute the image similarity of the heatmap images [230, 253].
That is because, unlike Mean Square Error (MSE), the SSIM metric has been shown not to be
significantly impacted by the changes in luminosity and contrast.

In this work, I formulate the SSIMmeasure as the perceptual difference between two similar
users’ heatmap images Hi and Hj:

SSIM(Hi, Hj) =
(2µiµj + c1)(2�ij + c2)

(µ2
i + µ2

j + c1)(�2
i + �2

j + c2)
, (c1 = (k1L)

2, c2 = (k2L)
2) (5.4)

where µi and µj are the averages, �i and �j are the variances, and �ij is the covariance of Hi

and Hj; L is the dynamic range of the pixel-values, k1 = 0.01 and k2 = 0.03 by default.

I leverage the integrated heatmap image, which combines all user trajectories, to calculate
the effective SSIM index that indicates the trajectory similarity of users. The SSIMs between
individual trajectory and integrated trajectory are estimated by calculating the SSIM maps (i.e.,
local values of the SSIM). To lower the impact of the unreached areas, only the swept area in
the integrated heatmap image was selected. The average SSIM value of the selected points is
defined as effective SSIM in this work. As this metric relies on heatmap images, it is highly
influenced by spatial granularity, as each pixel in the image corresponds to the spatial boundary
of the data. Intuitively, in Figure 5.1, as the granularity coarsens the trajectories become more
blurry and thus more similar to each other. The impact of the spatial granularity on the SSIM
index will discuss in Section 5.5.1.

Entropy of Trajectories: Mobility literature defines the highest potential accuracy of pre-
dictability of any individual, termed as ”maximum predictability” (⇧max) [255]. Maximum
predictability is defined by the entropy of information of a person’s trajectory (frequency, se-
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(a) MDC

(b) Geolife

Figure 5.1: Sample mobility heatmap images with various spatial granularities of MDC and
Geolife. Three different trajectories are shown with different granularities ranging from 50 m
to 900 m.
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(a) MDC

(b) Geolife

Figure 5.2: Overview of SSIM and entropy distribution of trajectories of MDC and Geolife
datasets. Different granularities of SSIM are compared in a row, where the granularity are
ranging from 100-meter to 900-meter.

quence of location visits, etc.). Hence, some similar characteristics of user spatial-temporal
patterns are able to be captured by leveraging the entropy of trajectory. In this chapter, I define
four types of entropy to measure trajectory similarity for spatial-temporal applications: first, the
entropy based on the probabilities of visited location distribution; second, the entropy based on
the geo-located locations in a time-series format; third, the entropy based on the users’ heatmap
images; fourth, the entropy of capturing full spatial-temporal order present in user’s mobility
pattern. Figure 5.2 shows the overview of SSIM and different entropy distributions of trajecto-
ries of MDC and Geolife datasets.

Shannon Entropy (SE): As a classic definition of data uncertainty, I first calculated the Shan-
non entropy (Eh) to characterize the probabilities of visited location distribution. A larger en-
tropy indicates greater disorder, and consequently reduces the predictability of an individual’s
movements. I define entropy following notion in [255, 256] and measure SE as:

Eh = �
nX

i=1

P (xi) log2[P (xi)] (5.5)
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where n is the length of the probability vector, P (xi) is the probability of location xi considering
only temporal pattern.

LonLat Entropy (LE): Considering the spatial-temporal pattern of the mobility data, the en-
tropy of visited locations in terms of longitudes and latitudes are separately estimated by using
the fuzzy entropyEf . This entropy model reflects the probability of a new sub-string and is able
to quantify the irregularity or complexity of the time-series data. The Ef of visited longitudes
and latitudes are integrated as the LE:

Ef = ln�m(r, n)� ln�m+1(r, n) (5.6)

where the threshold r, the definition of the function �m(r, n), the details, and the default values
can be found in Chen et al., Flood et al.

Heatmap Entropy (HE): In contrast to the aforementioned entropy models, I define a two-
dimensional entropy (E2D) to quantify the irregularity (i.e, unpredictable dynamics) of the
user’s heatmap image. The entropy of trajectory heatmap images was calculated using the
two-dimensional sample entropy method (SampEn2D) [259]. In a trajectory heatmap image
(L2), the features of the image were extracted by accounting for the spatial distribution of pixels
in differentm-length square windows with origin at u(i, j).

E2D (u,m, r) = � ln
Um+1(r)

Um(r)
(5.7)

Um(r) =
1

Nm

i,j,a,b=L�mX

i,j,a,b=1

P
h
xm(a, b)|d

⇥
xm(i, j), xm(a.b)

⇤
 r, (a, b) 6= (i, j)

i
(5.8)

where r a similarity threshold,Nm is the total number of square windows,P is the probability
of pixels set x(i, j) satisfying specific conditions, Um(r) is the average probability, and d is a
distance function to calculate the difference of corresponding points.

Actual Entropy (AE): To capture the full spatial-temporal order present in a user’s mobility
pattern, Song et al. proposed an actual entropymodel using the Lempel-Ziv algorithm. Different
to other types of entropy, actual entropy depends not only on the frequency of visited locations
but also on the order in which the nodes were visited and the time spent at each location [180].
In this chapter, the given area is segmented using structured grids, where each grid is initialized
as 0. Then the visited locations and whether the person reached the cell previously are tracked.
If the person visits an unreached cell, the location is marked as 1, which finally generates time-
series binary data to characterize the trajectory. The actual entropy Ea is calculated using:
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Ea =

0

@ 1

n

X

i

⇤i

1

A
�1

ln(n) (5.9)

where ⇤i is the length of the shortest sub-string starting at position i which does not previously
appear from position 1 to i� 1, and n is the length of the binary trajectory data.

Similarity of Outcome

In order to understand whether users with similar trajectories receive similar outcomes from
the models, I first need to define what it means to receive a similar outcome. As the objective
of the PUT models is to optimize privacy and prediction accuracy, I consider privacy gain and
utility gain as a positive outcome and measure the differences in privacy and utility gains of
similar users. I do so based on two techniques, one by simply measuring pair-wise differences
of outcomes: That is for ui and uj with similarity greater than a ✏ threshold, I measure difference
in privacy gain outcome, Dpri, as �Dpri = 1 � Dpri(ui)/Dpri(uj) and utility gain outcome,
Duti, as �Duti = 1�Duti(ui)/Duti(uj).

Alternative to thresholding, a second approach is to rely on a clustering technique to group
similar users together. I use k-means clustering to cluster users based on their SSIM and Entropy
features together. I apply the Elbow method and Silhouette method [260] to determine the
number of clusters (k values). The resulting clusters present a group of highly similar users
together. I then calculate the average pairwise differences�Dpri and�Duti for all the members
of each cluster.

Regardless of the grouping technique, I argue that �Dpri or �Duti satisfies fairness if it
is within 1 � ✏, otherwise I consider the PUT model to have violated individual fairness for
user pair ui and uj . The threshold of different combinations of entropy and SSIM are utilized
to distinguish similar users and map all users into a list of pairs with trajectory similarity and
performance discrepancy. To measure the fairness of systems as a whole for each model and
outcome, I report the percentage of user pairs for whom fairness was violated (i.e., violation%
or V%). As I will show, in the experiments, I set ✏ = 0.8 to correspond to users with at least 80%
similarity of trajectory which imposes the outcome of the model to be within 20% difference
between the similar users. The choice of ✏ = 0.8 is based on the Four-Fifths Rule, which is the
adverse impact measure used by Uniform Guidelines on Employee Selection Procedures [261,
262].
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5.4 Experiment Setup

In this section, I describe the datasets I used for evaluating the fairness of the PUT models
and the steps I took to set up the PUT models for examination.

5.4.1 Datasets

In order to evaluate the fairness of the examined models, I use two datasets that the original
studies used to evaluate the privacy level of their models.

MDC

The MDC dataset, recorded from 2009 to 2011, contains a large amount of continuous mobil-
ity data for 184 volunteers with smartphones running a data collection software, in the Lau-
sanne/Geneva area. Each record of the gps-wlan dataset represents a phone call or an observa-
tion of a WLAN access point collected during the campaign [220]. In addition to the trajectory
data, MDC includes individual user demographic information: categorical age groups, gen-
der, and employment status. To the best of my knowledge, MDC is the only dataset that has
published users’ demographic information along with their trajectories.

Geolife

The Geolife dataset was collected by Microsoft Research Asia from 182 users in the four-and-
a-half-year period from April 2007 to October 2011 and contains 17,621 trajectories, mostly at
a 5-second sampling rate [247]. As the Geolife dataset does not include demographic attributes
of individual users, I am unable to measure the group fairness for this dataset and the analysis
suffices for individual fairness.

As mentioned in Section 5.3.3, in Figure 5.1, with the granularity coarsens the trajectories
becomemore blurry and thusmore similar to each other. Figure 5.2 confirms this observation by
illustrating the SSIM and entropy-based similarity of all the users for varying spatial granularity
for both datasets. I can see that as the spatial granularity coarsens I observe an increase in the
SSIM values, with users becomingmore similar to each other. Furthermore, as different types of
entropy are taking different features of the spatial-temporal data into consideration, Figure 5.2
presents the expected similarity of users for each of the entropy-based measures. In addition
to the distribution of the entropy values presented in Figure 5.2 for each dataset, I observe that
across both datasets, SSIM along with Shannon and Actual Entropy correspond to the most
relaxed measure of similarity, LonLat and Heatmap Entropy correspond to stricter measures
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of similarity. The corresponding percentage of user pairs that meet each similarity criterion is
described in Table 5.1.

5.4.2 Original Properties of the Trajectory

Before describing the privacy and utility trade-off for mobility trajectories of the PUTmodels, I
first give brief definitions of two popular inference tasks (i.e., user re-identification andmobility
prediction), which are also applied to assess the privacy gain and utility decline in the PUT
models I discussed. These two popular inference tasks are named original tasks in this chapter,
where original demonstrates the nature of the data before being processed by any privacy-aware
model. These original tasks are leveraged to assess the native characteristics of data in terms
of trajectory uniqueness and mobility predictability, respectively.

User Re-identification Task (UR)

The accuracy of the user re-identification task is leveraged to assess the trajectory uniqueness
of the mobility trajectory. With more and more intelligent devices and sensors being utilized
to collect information about human activities, the trajectories also expose increasingly intimate
details about users’ lives, from their social life to their preferences. A mobility privacy study
conducted by De Montjoye et al. [29] illustrates that four spatial-temporal points are enough to
identify 95% of the individuals in a certain granularity. As human mobility traces are highly
unique, a mechanism capable of reducing the user re-identification risk can offer enhanced
privacy protection in mobility data sharing. The enhanced privacy protection is referred to
privacy gain (or PG) in the PUT models.

Mobility Prediction Task (MP)

The accuracy of the mobility prediction task is leveraged to assess the predictability of the
mobility trajectory. Mobility datasets are of great value for understanding human behaviour
patterns, smart transportation, urban planning, public health issue, pandemic management, etc.
Many of these applications rely on the next location forecasting of individuals, which in the
broader context can provide an accurate portrayal of citizens’ mobility over time. For the mo-
bility prediction task in this work, the raw geolocated data or other mobility data commonly
contain three elements: user identifier u, timestamps t, and location identifiers l. Hence, each
location records r could be denoted as ri = [ui, ti, li], while each location sequence S is a set
of ordered location records Sn = {r1, r2, r3, · · · , rn}, namely mobility trajectory. Therefore,
given the past mobility trajectory Sn = {r1, r2, r3, · · · , rn}, the mobility prediction task is to
infer the most likely location ln+1 at the next timestamp tn+1. The results of two PUT models
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Figure 5.3: Pareto Frontier trade-off of Utility and Privacy on two datasets. The hollow squares
and diamonds present the results of the PAE models. The solid points present the results of the
TrajGAN. Blue colour presents sequence length SL = 5. Black colour presents SL = 10.

indicate that a bit of mobility prediction accuracy is sacrificed in exchange for higher privacy
protection. The sacrificed prediction accuracy is referred to utility decline in the PUT models.

5.4.3 Performance of the Privacy-Utility Trade-off Models

Before examining fairness, I first offer an analysis and comparison of the two described PUT
models that I am investigating in terms of fairness. Figure 5.3 presents the privacy utility trade-
off of PAE and TrajGAN over the two described datasets. The y-axis presents the privacy gain
brought to the raw dataset by applying these models, whereas the x-axis presents the decline
in privacy prediction due to this privacy gain. The data fed into the PAE [246] are a list of
trajectories with specific sequence length SL, that is {S1

sl, S2
sl, S3

sl, · · · , S
j
sl}. For instance, if the

sequence length is 10, that indicates each trajectory contains 10 history location records r, S10

= {r1, r2, r3, · · · , r10}, and SL = 10.

As PAE is highly dependent on the sequence length and Lagrange multipliers that indi-
cate to what extent privacy or utility must be optimized, each point on the corresponding plots
presents experiments with one set of hyper-parameters. These results show that as the PAE
achieves maximum privacy protection it comes with the cost of degrading the prediction ac-
curacy. Similarly, TrajGAN achieves 80% privacy gain when applied on Geolife Dataset but
it highly degrades the utility. For the Lagrange multipliers setting of the PAE in this work,
I choose �1 = �0.1, �2 = 0.8, �3 = �0.1, as this combination exerts the most promising
privacy-utility trade-off in the PAE model.

Although these results are helpful in quantifying the Pareto Frontier limit of privacy and
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utility they fail to indicate whether the achieved privacy or utility is the same for all the users
in the datasets or whether such models perform better for a group of users, and fail for others.
In the next section, I tackle this research question by measuring individual and group fairness.

5.5 Fairness Analysis

In this section, I present the analysis to study whether the PUT models can be considered
fair. To do so, I analyze these models in terms of individual fairness and group fairness. The
similarity applied in the individual fairness is defined by SSIM and different types of entropy,
and the one in the group fairness is based on demographic attributes such as gender, age, and
employment status.

5.5.1 Individual Fairness

Themetrics of trajectories’ similarity are crucial for the quantification of individual fairness. As
discussed in Section 5.3.3, the similarity of trajectories can be quantified by SSIM and different
types of entropy. In this section, I discuss individual fairness with two different similarity
quantification approaches. First, the trajectories’ similarity is discriminated against based on
thresholding metrics of entropy and SSIM directly. Second, k-means clustering based on the
entropy and SSIM characteristics aforementioned is leveraged to classify similar users.

Similarity Based on Thresholding

Table 5.1 presents the individual fairness based on thresholding metrics of entropy and SSIM
among different models. The threshold of different combinations of entropy and SSIM are
utilized to distinguish similar users (ui v uj) and map all users into a list of pairs with trajec-
tory similarity and performance discrepancy. Based on fairness thresholding criteria defined
in Section 5.3.3, similar users (i.e., user pairs) imply at least 80% pairwise similarity of their
trajectories. ”% of pairs” in the table represents the percentage of the user pairs that meet the
corresponding metric threshold requirements. For instance, with the MDC dataset, 36.17% of
user pairs have a more than 80% similarity when under SE metric. That is, under the SE

metric, 36.17% user pairs are qualified for further analysis of outcome similarity.

The user pair is defined to achieve individual fairness when the outcome difference (�Dpri

or �Duti) between ui and uj is within 20%. Table 5.1 shows the percentage of user pairs that
commit fairness violation (i.e., V% = % of (�D>0.2)). For instance, in Table 5.1, with the
MDC dataset under the SE metric, there are only 10.50% and 11.11% of the qualified user
pairs violate the fairness criteria in two original tasks, which implies that individual fairness is
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achieved, as both V% are within 20%. Different from the original tasks, two PUT models have
V% that are all higher than 20%, hence, the performance of two PUTmodels violates individual
fairness. The higher V% indicates that more disparities in performance are caused by the model.
The values in the italic format present the cases where the outcome meets individual fairness
(i.e., V%  20%) in Table 5.1.

Overall, individual fairness is not achieved in the two selected PUT models. Especially
for the unfairness of the privacy gain, which is generally higher than the utility decline. When
comparing two different privacy models in a row, TrajGAN achieves less fairness violation rate
than PAE in both privacy gain and utility decline outcomes. For instance, in the MDC dataset,
when 45.26% and 29.42% of user pairs commit fairness violations in privacy gain and utility
decline, respectively, the PAE reports twice as many fairness violations for both outcomes.
While both the Geolife and MDC data exhibit individual unfairness, the Geolife is worse in
both the PUT models and the accuracy of the original tasks. In both original tasks, Geolife’s
unfairness rate is as high as 60%, and this inequity is exacerbated when with PUT models. In
contrast to Geolife, the performance of the MDC in the original tasks conforms to the definition
of individual fairness, that is, the performance difference of task accuracy in MDC is within
20% in both user re-identification tasks and mobility prediction tasks.

Impact of Spatial Granularity on Similarity: After the overall comparison of threshold
metrics, I discuss the model discrepancy when trajectory similarity is based on the SSIM index
under varying granularity. As a crucial metric in distinguishing the trajectory similarity, the
SSIM index could be affected by different parameters, which will result in subtle performance
disparities in the quantification of individual fairness. The spatial granularity of trajectory is the
most important one among these parameters. These disparities could be intuitively observed in
the heatmaps (Figure 5.1). In contrast to the SSIM, the spatial granularity has less impact on
different types of entropy, hence, they are not in discussion here.

Figure 5.4 then shows the impact of varying spatial granularity on the model discrepancy.
Themodel which achieves individual fairness should perform less discrepancywhenwith higher
SSIM. The accuracy of original tasks and two PUT models are compared in granularity at 100
meters, 300 meters, 500 meters, and 900 meters. In conclusion, different models have diverse
sensitivities of varying granularities. For both original tasks (UR and MP) in two datasets,
they all have an increasing difference when with a higher SSIM index, which means that they
violate individual fairness. For the PAE, individual fairness is met on MDC data but not on
Geolife. The PAE is also the most sensitive model for varying granularities. For instance,
when granularity changes from 100-meter (Figure 5.4a) to 900-meter (Figure 5.4d), PAE has
the most obvious change of its line trend on the UR (i.e., privacy gain), and the decreasing trend
at 100-meter granularity is lost at 900-meter. Overall, the selection of SSIM granularity has a
significant impact on the judgement of the individual fairness of a model. However, these im-
pacts become subtle when the SSIM is applied to the trajectory similarity distinction, as the user
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(a) 100m, MDC (b) 300m, MDC (c) 500m, MDC

(d) 900m, MDC (e) 100m, Geolife (f) 300m, Geolife

(g) 500m, Geolife (h) 900m, Geolife

Figure 5.4: Themodel performance discrepancywhen trajectory similarity is based on the SSIM
in different granularities (i.e., 100m, 300m, 500m, and 900m). Figures (a) to (d) are the results
of the MDC dataset, and Figures (e) to (h) are of Geolife. UR is short for user re-identification
task, MP is for the mobility prediction task. The performance discrepancy (i.e., Performance
DIFF) of each model in different granularities compares in each sub-figure.

pairs table reduced the granularity impact to some extent. For the remaining of the analysis, the
granularity of the SSIM is chosen as 100-meter.

Similarity Based on K-means Clustering

Alternative to the results presented based on the similarity thresholding, Table 5.2 demonstrates
the results of individual fairness based on the clustering technique described in Section 5.3.3.
Based on applying the Elbow method and Silhouette method, the number of clusters (k) for
MDC and Geolife are 4 and 5, respectively. For each cluster, the table reports the percentage
of users whose individual fairness was violated for a given outcome and under various models.
More precisely, the results presented here indicate that the original model that objectifies a
single task (prediction or privacy) is able to meet the individual fairness criteria for the MDC
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(a) Gender

(b) Age

(c) Working Status

Figure 5.5: The privacy protection outcome of PUT models across different demographic
groups for the MDC dataset. The black box shows how the privacy gain varies across the
individual within the same demographic group. The orange box denotes the differences across
the groups, the smaller box means the model satisfies more group fairness.

dataset. It can be observed that in the case of the PAE model, the privacy gain across exhibits
high variations across users in the same clusters. Even in the cases where the model satisfies
individual fairness by performing similarly in terms of utility decline (clusters 2 and 4 of MDC
and all clusters of Geolife ), the privacy gains of those users are very different from each other.
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(a) Gender

(b) Age

(c) Working Status

Figure 5.6: The prediction accuracy outcome of PUT models across different demographic
groups for the MDC dataset. The black box shows how the privacy gain varies across the
individual within the same demographic group. The orange box denotes the differences across
the groups, the smaller box means the model satisfies more group fairness.
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5.5.2 Group Fairness

Group fairness states that demographic groups should receive similar decisions. To be specific,
group fairness argues that a disadvantaged group should receive similar treatment to the advan-
taged group. Figure 5.5 presents the discrepancy of the privacy gain from two PUT models
for different demographic groups, and Figure 5.6 presents the utility decline. It is observed
that both PAE and TrajGAN perform equally for different gender attributes, as shown in Fig-
ure 5.5a, where the orange boxes (labelled as All Groups) on both are very small. That is while
the privacy gain varies across individuals within the same gender, the model achieves group
fairness when grouping individuals by gender. The same observations could be made for the
age and employment status, which exist bigger differences across the classes than gender, but
they still achieve group fairness as �D < 20%. Similarly, in Figure 5.6, both models equally
meet the group fairness criteria on the utility decline.

In order to quantify the group fairness of the disadvantaged groups in a more statistical
approach, the results of the group fairness score (GFS) are shown in Table 5.3. For instance, for
different age groups, the subgroupwith ages between 22 and 27 (i.e., ”22 - 27”) is regarded as the
advantaged group, as it has the dominant user number for all age groups. The other age groups’
GFSs are calculated based on the disparate impact between them and the advantaged group.
Then, compare all GFSs against the fairness threshold of 0.8, which is defined in Section 5.3.3,
that is,GFS � 80% indicates the fairly treat the disadvantaged group andGFS < 80% indicates
the unfairly treating. For example, the result of the ”28-33” group (i.e., GFS = 98.65%) then
indicated that the model satisfies the group fairness as 98.65% > 80%.

In conclusion, except for two subgroups with age attribute (i.e., ”<21” and ”>39”) violating
the four-fifths rule, the other subgroups satisfy the group fairness. Finally, it is worth noting that
the results presented here are highly dependent on the studied dataset, which will be discussed
in detail in the next section.

5.6 Discussion

In this section, I describe the limitations and implications of this work and discuss possible
future directions.

5.6.1 Limitation

Despite my efforts, the presented chapter also has its limitations. Firstly, the collected mobility
dataset are often biased as they only present a subset of the population who took part in data
collection. In many cases, the users are limited to students or those affiliated with the research
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team that has collected the dataset. This means the examined trajectories are not representative
of everyone’s mobility behaviour. Furthermore, the demographics of the participants are also
limited in terms of age and socio-economic diversity.

Secondly, in this chapter, I reported that I did not observe any violation of group fairness
across gender, age and employment level for the examined PUT models. However, I acknowl-
edge that the results presented regarding group fairness are highly influenced by the city and
societal structures that data collected. In the case ofMDC, the trajectories of users correspond to
a level of socio-economic and cultural freedom that is associated with life in Switzerland. Such
observations will surely differ if I was to examine other cultures such as those in the United
States or Asian countries where there exists a wider socio-economic and gender inequality gap.
I also believe the availability of datasets with rich demographic information could enable future
work to examine the intersection of individual fairness within demographic groups.

5.6.2 Implication

This chapter has multiple important implications: first, this work offers a novel methodology
for defining fairness in the context of spatial-temporal datasets. I believe works such as this
will help shape the future roadmap of fairness in Machine Learning studies by offering the pos-
sibility to measure equity within different systems such as those of mobility-based ones (e.g.,
transportation). The choice of which of the proposed similarity metrics to select for evaluat-
ing individual fairness is also another important dimension that could be highly context and
application-dependent. For example, for applications where there is a need for strict fairness
measurement, corresponding to the WYZIWIG worldview [245], a strict similarity measure
such as Combined Entropy could be chosen. In contrast for applications where the groups are
not necessarily equal, but for the purposes of the decision-making process, I would prefer to
treat them as if they were, a less sensitive similarity measure such as coarse grain SSIM could
be used.

Although this chapter focus on fairness analysis of the PUT models, I believe this study
can be the first step towards implementing fairness interventions that are embedded in these
models. For example, in-processing approaches rely on adjusting the model during the training
to enforce fairness goals to bemet and optimized in the samemanner as accuracy is. This is often
achieved through adversarial networks or fair representation learning approaches such as [263],
model induction, model selection, and regularization [243]. I believe designing privacy-aware
models to become fairness-aware is a research direction that would receive significant attention
in the future.
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5.7 Conclusion

Intuitively, fairness has a close relationship to privacy, no matter structural data or unstruc-
tured data in machine learning. But the quantification between them is still unclear. In this
chapter, I proposed different metrics for measuring individual fairness in the context of spatial-
temporal mobility data. I compared different location privacy-protection mechanisms, PUT
models, on the defined metrics for both individual and group-based. The results on two real
trajectory datasets show that the privacy-aware models achieve fairness at the group level but
violate individual fairness. The findings raise questions regarding the equity of the privacy-
preserving models when individuals with similar trajectories receive a very different level of
privacy gain. I leverage the empirical results of this chapter to make valuable suggestions for
the further integration of fairness objectives into the PUT models.
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Chapter 6

Summary and Outlook

6.1 Conclusions and Contributions

Undoubtedly, the pandemic accelerated the digital transformation of the world. With the
purpose of making human mobility and activity models more inclusive, private, and fair, it
is exceptionally beneficial to explore and build more realistic and reliable models within a
privacy-preserving framework. In this thesis, I developed and implemented advanced meth-
ods/algorithms to model human mobility and activity in terms of temporal-context dynamics,
multi-occupancy impacts, privacy protection, and fair analysis. The main conclusions are sum-
marized as follows:

• Towardsmapping contextual-temporal dynamics in human activitymodelling, I conducted
a series of experiments and leveraged activity-level experiments to evaluate the perfor-
mance of predictive models with integrated temporal information. This work highlighted
that a deep learning network with an integrated timestamp could have better prediction
performance, which is essential for further human behaviour modelling and prediction. I
concluded how the contextual-temporal dynamics will exert influence on the final predic-
tive model performance. The result demonstrated the performance improvement of the
prediction accuracy for the next activity and time.

• Tomodel human activity in multiple-occupancy smart homes, I presentedMoSen, a frame-
work for accelerating the actual implementation of sensor-based activity recognition sys-
tems by analyzing the trade-off between the overall system performance and cost. Often,
researchers in a lab setting prefer the best technology with the highest accuracy, while the
accumulated cost is hard to afford in actual home designs. Moreover, the floorplans and
furniture layouts are unique for each home, which results in highly diverse sensor layouts
in the real environment. MoSen emulates multiple-occupancy scenarios with synthetic
multi-occupancy behaviour models and can be extended to different floorplan or sensor
configuration. I evaluated the efficacy of theMoSenwith an automatic identification anno-
tation task using experiments on synthetic datasets and show how the annotation accuracy
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is affected by the number of residents, different localization resolutions, and sensor den-
sity. Through the trace-driven simulations, I also analyzed the effect of each sensor. Then
the sensor selection strategy for the system will be provided. The initial analysis of dif-
ferent sensor configurations will provide the designers or practitioners with an effective
sensor selection strategy.

• To explore an effective privacy-aware network in human mobility modelling, I imple-
mented a privacy-preserving architecture based on adversarial networks (i.e., Mo-PAE).
The proposed model considered three different optimization objectives and searched for
the optimum trade-off for the utility and privacy of a given dataset. I reported an extensive
analysis of the proposed model performances and the impact of its hyperparameters using
four real-world mobility datasets. The weights �1, �2, and �3 bring more flexibility to the
proposed framework, enabling it to satisfy different scenarios’ requirements according to
the relative importance of utility requirements and privacy budgets. I evaluated the frame-
work on four datasets and benchmarked the results against an LSTM-GAN approach and
a DP mechanism. The comparisons indicated the superiority of the proposed framework
and the efficiency of the proposed privacy-preserving feature extractor EncL.

• To characterize mobility data on privacy and fairness, I proposed different metrics for
measuring individual fairness in the context of spatial-temporal mobility data. Intuitively,
fairness is closely related to privacy, whether structural or unstructured data in machine
learning. But the quantification between them is still unclear. I examined the fairness
of two state-of-the-art privacy-preserving models that rely on GAN and representation
learning to reduce the re-identification rate of users for data sharing. The results on two
real trajectory datasets show that the privacy-aware models achieve fairness at the group
level but violate individual fairness. The findings raise questions regarding the equity of
the privacy-preserving models when individuals with similar trajectories receive a very
different level of privacy gain.

6.2 Discussion and Future Work

With the increasing digital trend, the proliferation of IoT and smart homes will push differ-
ent devices/applications to occupy every corner of our lives. Towards the smart home scenario,
especially for healthcare purposes, future work should systematically integrate the temporal
information into deep learning algorithms to provide a time-sensitive model with higher pre-
diction accuracy. Furthermore, indoor wireless signal-based activity recognition technologies
are expected to have better continuity in the near future, as the longer time duration of the dataset
might provide better performance. Different data fusion to build a multimodal intelligent pre-
dictive ecosystem is beneficial. In the past, when anticipating future activity, researchers would
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like to choose an activity level or action level but were less focused on two-level comparisons.
In future work, the activity prediction problem from both levels will be more beneficial.

Another challenge in activity prediction and even activity recognition is the multi-person
scenario. First, different from the single-occupancy scene, the interactions between residents
introduce uncertainty when defining indoor activities. The interaction between multiple resi-
dents can make the predictive model more intricate and obscure in generating plausible infer-
ences. Second, annotating the triggered sensor with corresponding identification and activity
is challenging in the multi-resident scenario. The lack of ground-truth values is deficient to the
multiple-analysis with advanced machine learning or deep learning technologies. Due to the
data scarcity of the multi-occupancy scene, the synthetic method bridges the gap. The analysis
is valuable for researchers or practitioners to design a real multi-occupancy scenario in the fu-
ture. Third, data privacy is a big concern when collecting real human data. Even for the sensor-
based activity recognition system, which does not invade privacy as severely as the video-based
systems, there still is a need to attain the trade-off between data utility and privacy. Fourth, nu-
merous challenges still need to be overcome in the single-occupancy environment [39]. Human
activities are hard tomodel uniformly, especially when they have different backgrounds, diverse
habits, and varied activity performances [160]. The uncertainty from the spatial and temporal
difference also increases this difficulty [42]. In the multi-occupancy scenario, activity recog-
nition becomes more sophisticated and challenging with the increasing number of residents.
There is also a trade-off between the RTLS localization resolution and sensor costs. Finally,
the floorplans and furniture layouts are unique for each home, which results in highly diverse
sensor layouts in a real environment. These gaps impede the practical data collection on the
multi-occupancy scenario. MoSen system can extend to different floorplans, and the initial
analysis of each specific scenario provides designers with information on designing a sensor-
based system with a better cost-accuracy balance. But more should be explored to make the
activity recognition technology beneficial for each home.

Privacy and fairness will be increasingly important with the proliferation of IoT technolo-
gies. By expanding Mo-PAE, other utility functions could be considered, such as community
detection based on unsupervised or deep-embedded clustering methods. Additionally, auto-
mated search techniques, such as deep deterministic policy gradient algorithm and reinforce-
ment learning, could be leveraged to search for the optimal weight combinations efficiently.
More scenarios of different data utilities could improve the robustness of the proposed architec-
ture. When it terms to the relationships between fairness and privacy, I investigated the fairness
analysis of the PUTmodels. This study can be the first step toward implementing fairness inter-
ventions embedded in these models. For example, in-processing approaches rely on adjusting
the model during the training to enforce fairness goals to be met and optimized in the same
manner as accuracy. This is often achieved through adversarial networks or fair representation
learning approaches such as [263], model induction, model selection, and regularization [243].
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I believe designing privacy-aware models to become fairness-aware is a research direction that
will receive significant attention in the future.
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