5,496 research outputs found

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Mapping programs to equations

    Get PDF
    Extracting the function of a program from a static analysis of its source code is a valuable capability in software engineering; at a time when there is increasing talk of using AI (Artificial Intelligence) to generate software from natural language specifications, it becomes increasingly important to determine the exact function of software as written, to figure out what AI has understood the natural language specification to mean. For all its criticality, the ability to derive the domain-to-range function of a program has proved to be an elusive goal, due primarily to the difficulty of deriving the function of iterative statements. Several automated tools obviate this difficulty by unrolling the loops; but this is clearly an imperfect solution, especially in light of the fact that loops capture most of the computing power of a program, are the locus of most of its complexity, and the source of most of its faults. This dissertation investigates a three-step process to map a program written in a C-like language into a function from inputs to outputs, or from initial states to final states. The semantics of iterative statements are captured (while loops, repeat loops, for loops), including nested iterative statements, by means of the concept of invariant relation; an invariant relation is a reflexive transitive relation that links program states separated by an arbitrary number of iterations. But the function derived for large and complex programs may be too unwieldy to be useful, not unlike drinking from a fire hose. In order to enable the user to query the program at scale, four functions are proposed. We propose four functions: Assume(), which enables the user to make assumptions about program states or program parts; Capture(), which enables the user to capture the state of the program at some label of the function of some program part; Verify(), which enables the user to verify a unary assertion about the state of the program at some label, or a binary assertion about a program part; and Establish(), which is envisioned to use program repair techniques to modify the program so as to make a Verify() query return true

    Witness-based validation of verification results with applications to software-model checking

    Get PDF
    In the scientific world, formal verification is an established engineering technique to ensure the correctness of hardware and software systems. Because formal verification is an arduous and error-prone endeavor, automated solutions are desirable, and researchers continue to develop new algorithms and optimize existing ones to push the boundaries of what can be verified automatically. These efforts do not go unnoticed by the industry. Hardware-circuit designs, flight-control systems, and operating-system drivers are just a few examples of systems where formal verification is already part of the quality-assurance repertoire. Nevertheless, the primary fields of application for formal verification are mainly those where errors carry a high risk of significant damage, either financial or physical, because the costs of formal verification are considered to be too high for most other projects, despite the fact that the research community has made vast advancements regarding the effectiveness and efficiency of formal verification techniques in the last decades. We present and address two potential reasons for this discrepancy that we identified in the field of automated formal software verification. (1) Even for experts in the field, it is often difficult to decide which of the multitude of available techniques is the most suitable solution they should recommend to solve a given verification problem. Moreover, even if a suitable solution is found for a given system, there is no guarantee that the solution is sustainable as the system evolves. Consequently, the cost of finding and maintaining a suitable approach for applying formal software verification to real-world systems is high. (2) Even assuming that a suitable and maintainable solution for applying formal software verification to a given system is found and verification results could be obtained, developers of the system still require further guidance towards making practical use of these results, which often differ significantly from the results they obtain from classical quality-assurance techniques they are familiar with, such as testing. To mitigate the first issue, using the open-source software-verification framework CPAchecker, we investigate several popular formal software-verification techniques such as predicate abstraction, Impact, bounded model checking, k -induction, and PDR, and perform an extensive and rigorous experimental study to identify their strengths and weaknesses regarding their comparative effectiveness and efficiency when applied to a large and established benchmark set, to provide a basis for choosing the best technique for a given problem. To mitigate the second issue, we propose a concrete standard format for the representation and communication of verification results that raises the bar from plain "yes" or "no" answers to verification witnesses, which are valuable artifacts of the verification process that contain detailed information discovered during the analysis. We then use these verification witnesses for several applications: To increase the trust in verification results, we irst develop several independent validators based on violation witnesses, i.e. verification witnesses that represent bugs detected by a verifier. We then extend our validators to also erify the verification results obtained from a successful verification, which are represented y correctness witnesses. Lastly, we also develop an interactive web service to store and retrieve these verification witnesses, to provide online validation to quickly de-prioritize likely wrong results, and to graphically visualize the witnesses, as an example of how verification can be integrated into a development process. Since the introduction of our proposed standard format for verification witnesses, it has been adopted by over thirty different software verifiers, and our witness-based result-validation tools have become a core component in the scoring process of the International Competition on Software Verification.In der Welt der Wissenschaft gilt die Formale Verifikation als etablierte Methode, die Korrektheit von Hard- und Software zu gewährleisten. Da die Anwendung formaler Verifikation jedoch selbst ein beschwerliches und fehlerträchtiges Unterfangen darstellt, ist es erstrebenswert, automatisierte Lösungen dafür zu finden. Forscher entwickeln daher immer wieder neue Algorithmen Formaler Verifikation oder verbessern bereits existierende Algorithmen, um die Grenzen der Automatisierbarkeit Formaler Verifikation weiter und weiter zu dehnen. Auch die Industrie ist bereits auf diese Anstrengungen aufmerksam geworden. Flugsteuerungssysteme, Betriebssystemtreiber und Entwürfe von Hardware-Schaltungen sind nur einzelne Beispiele von Systemen, bei denen Formale Verifikation bereits heute einen festen Stammplatz im Arsenal der Qualitätssicherungsmaßnahmen eingenommen hat. Trotz alledem bleiben die primären Einsatzgebiete Formaler Verifikation jene, in denen Fehler ein hohes Risiko finanzieller oder physischer Schäden bergen, da in anderen Projekten die Kosten des Einsatzes Formaler Verifikation in der Regel als zu hoch empfunden werden, unbeachtet der Tatsache, dass es der Forschungsgemeinschaft in den letzten Jahrzehnten gelungen ist, enorme Fortschritte bei der Verbesserung der Effektivität und Effizienz Formaler Verifikationstechniken zu machen. Wir präsentieren und diskutieren zwei potenzielle Ursachen für diese Diskrepanz zwischen Forschung und Industrie, die wir auf dem Gebiet der Automatisierten Formalen Softwareverifikation identifiziert haben. (1) Sogar Fachleuten fällt es oft schwer, zu entscheiden, welche der zahlreichen verfügbaren Methoden sie als vielversprechendste Lösung eines gegebenen Verifikationsproblems empfehlen sollten. Darüber hinaus gibt es selbst dann, wenn eine passende Lösung für ein gegebenes System gefunden wird, keine Garantie, dass sich diese Lösung im Laufe der Evolution des Systems als Nachhaltig erweisen wird. Daher sind sowohl die Wahl als auch der Unterhalt eines passenden Ansatzes zur Anwendung Formaler Softwareverifikation auf reale Systeme kostspielige Unterfangen. (2) Selbst unter der Annahme, dass eine passende und wartbare Lösung zur Anwendung Formaler Softwareverifikation auf ein gegebenes System gefunden und Verifikationsergebnisse erzielt werden, benötigen die Entwickler des Systems immer noch weitere Unterstützung, um einen praktischen Nutzen aus den Ergebnissen ziehen zu können, die sich oft maßgeblich unterscheiden von den Ergebnissen jener klassischen Qualitätssicherungssysteme, mit denen sie vertraut sind, wie beispielsweise dem Testen. Um das erste Problem zu entschärfen, untersuchen wir unter Verwendung des Open-Source-Softwareverifikationsystems CPAchecker mehrere beliebte Formale Softwareverifikationsmethoden, wie beispielsweise Prädikatenabstraktion, Impact, Bounded-Model-Checking, k-Induktion und PDR, und führen umfangreiche und gründliche experimentelle Studien auf einem großen und etablierten Konvolut an Beispielprogrammen durch, um die Stärken und Schwächen dieser Methoden hinsichtlich ihrer relativen Effektivität und Effizienz zu ermitteln und daraus eine Entscheidungsgrundlage für die Wahl der besten Lösung für ein gegebenes Problem abzuleiten. Um das zweite Problem zu entschärfen, schlagen wir ein konkretes Standardformat zur Modellierung und zum Austausch von Verifikationsergebnissen vor, welches die Ansprüche an Verifikationsergebnisse anhebt, weg von einfachen "ja/nein"-Antworten und hin zu Verifikationszeugen (Verification Witnesses), bei denen es sich um wertvolle Produkte des Verifikationsprozesses handelt und die detaillierte, während der Analyse entdeckte Informationen enthalten. Wir stellen mehrere Anwendungsbeispiele für diese Verifikationszeugen vor: Um das Vertrauen in Verifikationsergebnisse zu erhöhen, entwickeln wir zunächst mehrere, voneinander unabhängige Validatoren, die Verletzungszeugen (Violation Witnesses) verwenden, also Verifikationszeugen, welche von einem Verifikationswerkzeug gefundene Spezifikationsverletzungen darstellen, Diese Validatoren erweitern wir anschließend so, dass sie auch in der Lage sind, die Verifikationsergebnisse erfolgreicher Verifikationen, also Korrektheitsbehauptungen, die durch Korrektheitszeugen (Correctness Witnesses) dokumentiert werden, nachzuvollziehen. Schlussendlich entwickeln wir als Beispiel für die Integrierbarkeit Formaler Verifikation in den Entwicklungsprozess einen interaktiven Webservice für die Speicherung und den Abruf von Verifikationzeugen, um einen Online-Validierungsdienst zur schnellen Depriorisierung mutmaßlich falscher Verifikationsergebnisse anzubieten und Verifikationszeugen graphisch darzustellen. Unser Vorschlag für ein Standardformat für Verifikationszeugen wurde inzwischen von mehr als dreißig verschiedenen Softwareverifikationswerkzeugen übernommen und unsere zeugen-basierten Validierungswerkzeuge sind zu einer Kernkomponente des Bewertungsschemas des Internationalen Softwareverifikationswettbewerbs geworden

    On the engineering of crucial software

    Get PDF
    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described

    LLM for SoC Security: A Paradigm Shift

    Full text link
    As the ubiquity and complexity of system-on-chip (SoC) designs increase across electronic devices, the task of incorporating security into an SoC design flow poses significant challenges. Existing security solutions are inadequate to provide effective verification of modern SoC designs due to their limitations in scalability, comprehensiveness, and adaptability. On the other hand, Large Language Models (LLMs) are celebrated for their remarkable success in natural language understanding, advanced reasoning, and program synthesis tasks. Recognizing an opportunity, our research delves into leveraging the emergent capabilities of Generative Pre-trained Transformers (GPTs) to address the existing gaps in SoC security, aiming for a more efficient, scalable, and adaptable methodology. By integrating LLMs into the SoC security verification paradigm, we open a new frontier of possibilities and challenges to ensure the security of increasingly complex SoCs. This paper offers an in-depth analysis of existing works, showcases practical case studies, demonstrates comprehensive experiments, and provides useful promoting guidelines. We also present the achievements, prospects, and challenges of employing LLM in different SoC security verification tasks.Comment: 42 page

    SAGA: A project to automate the management of software production systems

    Get PDF
    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management
    corecore