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ABSTRACT

MAPPING PROGRAMS TO EQUATIONS

by
Hessamaldin Mohammadi

Extracting the function of a program from a static analysis of its source code is a valuable

capability in software engineering; at a time when there is increasing talk of using AI

(Artificial Intelligence) to generate software from natural language specifications, it becomes

increasingly important to determine the exact function of software as written, to figure out

what AI has understood the natural language specification to mean. For all its criticality,

the ability to derive the domain-to-range function of a program has proved to be an elusive

goal, due primarily to the difficulty of deriving the function of iterative statements. Several

automated tools obviate this difficulty by unrolling the loops; but this is clearly an imperfect

solution, especially in light of the fact that loops capture most of the computing power of a

program, are the locus of most of its complexity, and the source of most of its faults. This

dissertation investigates a three-step process to map a program written in a C-like language

into a function from inputs to outputs, or from initial states to final states. The semantics

of iterative statements are captured (while loops, repeat loops, for loops), including nested

iterative statements, by means of the concept of invariant relation; an invariant relation is a

reflexive transitive relation that links program states separated by an arbitrary number of

iterations.

But the function derived for large and complex programs may be too unwieldy to be

useful, not unlike drinking from a fire hose. In order to enable the user to query the program

at scale, four functions are proposed. We propose four functions: Assume(), which enables

the user to make assumptions about program states or program parts; Capture(), which

enables the user to capture the state of the program at some label of the function of some

program part; Verify(), which enables the user to verify a unary assertion about the state



of the program at some label, or a binary assertion about a program part; and Establish(),

which is envisioned to use program repair techniques to modify the program so as to make a

Verify() query return true.



MAPPING PROGRAMS TO EQUATIONS

by
Hessamaldin Mohammadi

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2023



Copyright © 2023 by Hessamaldin Mohammadi

ALL RIGHTS RESERVED



APPROVAL PAGE

MAPPING PROGRAMS TO EQUATIONS

Hessamaldin Mohammadi

Dr. Ali Mili, Dissertation Advisor Date
Professor of Computer Science, NJIT

Dr. Iulian Neamtiu, Committee Member Date
Professor of Computer Science, NJIT

Dr. Ioannis Koutis, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Hai Phan, Committee Member Date
Associate Professor of Data Science, NJIT

Dr. Tiantian Wang, Committee Member Date
Professor of Computer Science and Technology, Harbin Institute of Technology,
Harbin, China

Dr. Ye Yang, Committee Member Date
software Project Manager, Amazon , New York, US



BIOGRAPHICAL SKETCH

Author: Hessamaldin Mohammadi

Degree: Doctor of Philosophy

Date: May 2023

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey institute of Technology, Newark, NJ, 2023

• Master of Science in Software Engineering,
AmirKabir University of Tehran, Tehran, Iran, 2014

• Bachelor of Science in Software Engineering,
Shahid Bahonar University of Kerman, Kerman, Iran, 2012

Major: Computer Science

Presentations and Publications:

H. Mohammadi, W. Ghardallou, R. Linger, A. Mili, ”Computing Program Functions”,
Proceedings of the IEEE/ACM 10th International Conference on Formal Methods in
Software Engineering, 2022.

H. Mohammadi, W. Ghardallou, A. Mili, ”Assume, Capture, Verify, Establish: Ingredients
for Scalable Software Analysis”, IEEE 21st International Conference on Software
Quality, Reliability and Security Companion (QRS-C), 2021.

H. Mohammadi, W. Ghardallou, R. Linger, A. Mili, ”Function Extraction: Mapping
Programs Into Mathematica Equations”, Wolfram Technology Conference, 2022.

W. Ghardallou, H. Mohammadi, R. Linger, A. Mili, ”Invarint Relations for Affine Loops”,
Science of Computer Programming, under revision

iv



To My Beloved Parents

v



ACKNOWLEDGMENT

Throughout the writing of this dissertation, I have received a great deal of support and

assistance. First, I would like to thank my supervisor, Dr. Ali Mili, for his guidance and

invaluable advice in formulating research questions and methodologies.

I would like to express my appreciation to Dr. Iulian Neamtiu, Dr. Ioannis Koutis,

Dr. Hai Phan, Dr. Tiantian Wang, and Dr. Ye Yang for taking the time to serve as committee

members and for their insightful feedback.

My thanks to Dr. Ziavras and the Department of Computer Science for providing me

with financial support.

In addition, I appreciate the kind assistance and academic advice provided by

Dr. Reza Curtmola, Dr. Baruch Schieber, Ms. Angel Butler, and Ms. Kathy Thompson in

the Computer Science department.

I am also thankful for all the support I received from my fellow researchers,

Dr. Wided Ghardalou and Hadi Ghahremannezhad.

vi



TABLE OF CONTENTS

Chapter Page

1 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Concolic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Invariant Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 Functional Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 MATHEMATICS FOR PROGRAMMING . . . . . . . . . . . . . . . . . . . . 12

2.1 Relational Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Relational Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Sets and relations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Operations on relations . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Properties of relations . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Symbolic Equation Solving . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Mathematica: modern technical computing . . . . . . . . . . . . 20

2.3.2 Arithmetic operations . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Logical operations . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 PROGRAM CORRECTNESS . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Program Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Correctness Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Correctness Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 FROM C-LIKE PROGRAMS TO PROGRAM FUNCTIONS . . . . . . . . . . 43

4.1 A Three Step Transformation . . . . . . . . . . . . . . . . . . . . . . . 43

vii



TABLE OF CONTENTS
(Continued)

Chapter Page

4.2 J2A: Mapping Java Code onto an Abstract Syntax Tree . . . . . . . . . . 43

4.3 A2M: Mapping Each Node to an Equation . . . . . . . . . . . . . . . . 45

4.4 M2F: Equations to Program Function . . . . . . . . . . . . . . . . . . . 47

5 INVARIANT RELATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Loop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Invariant Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Invariant Relation and Loop Function . . . . . . . . . . . . . . . . . . . 55

6 INVARIANT RELATION GENERATION . . . . . . . . . . . . . . . . . . . 60

6.1 Elementary Invariant Relation . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Recognizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Recognizer Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 PROGRAM SEMANTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Variable Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Assignment Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3 Bracketed Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.5 If-Then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.6 If-Then-Else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.7 While Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.8 For Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 INVARIANT RELATIONS FOR AFFINE LOOPS . . . . . . . . . . . . . . . 74

8.1 A Unary Recognizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2 A Binary Recognizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3 Comparison With Other Tools . . . . . . . . . . . . . . . . . . . . . . . 76

viii



TABLE OF CONTENTS
(Continued)

Chapter Page

9 IMPLEMENTATION AND DEMOS . . . . . . . . . . . . . . . . . . . . . . 78

9.1 From Source Code to AST . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.2 From AST to Mathematica Equations . . . . . . . . . . . . . . . . . . . 79

9.3 From Mathematica to Program Function . . . . . . . . . . . . . . . . . . 80

9.4 A Full Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 INGREDIENTS FOR SCALABILITY . . . . . . . . . . . . . . . . . . . . . 86

10.1 Assume(), Capture(), Verify(), Establish() . . . . . . . . . . . . . . . . . 86

10.2 A Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10.3 Path and Path Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.4 Semantic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.5 Illustration and Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

11 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.1 Contribution and Comparison With Previous Studies . . . . . . . . . . . 102

11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ix



LIST OF TABLES

Table Page

6.1 Sample Recognizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1 Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.1 Unary Recognizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Binary Recognizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



LIST OF FIGURES

Figure Page

2.1 Special relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Complement and inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Relational representation of sets. . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Relational product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Multiplying with universal relation. . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Properties of relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Sum overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Sum examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Product overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Product examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 Series overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.12 Series examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.13 Limit overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.14 Limit examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.15 Derivation overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.16 Derivation examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.17 Solve overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.18 Solve examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.19 Reduce overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.20 Reduce examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.21 Exists overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.22 Exists examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.23 Logical expand overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.24 Logical expand examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.25 Implies overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xi



LIST OF FIGURES
(Continued)

Figure Page

2.26 Implies examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Interpretation of dom(R ∩ P). . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Correctness properties for example 1. . . . . . . . . . . . . . . . . . . . . . 41

3.3 Correctness properties for example 2. . . . . . . . . . . . . . . . . . . . . . 41

3.4 Correctness properties for example 3. . . . . . . . . . . . . . . . . . . . . . 42

4.1 Abstract syntax tree for sample program. . . . . . . . . . . . . . . . . . . . 45

4.2 Mathematica output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Tabular output-type 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Tabular output-type 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Sample recognizer in our database . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Mapping from formal to actual variables. . . . . . . . . . . . . . . . . . . . 66

6.3 Sample Imply for pattern matching. . . . . . . . . . . . . . . . . . . . . . . 67

8.1 Source code to test the invariant generator tools . . . . . . . . . . . . . . . . 76

8.2 Our invariant relation for program in Figure 8.1. . . . . . . . . . . . . . . . 76

9.1 Method declaration in Java Parser. . . . . . . . . . . . . . . . . . . . . . . 79

9.2 Java parser runtime representation. . . . . . . . . . . . . . . . . . . . . . . 81

9.3 Mathematica api connection. . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.4 Mathematica relation1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.5 Mathematica relation2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.6 Mathematica relation3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.1 Use case 1, tool overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.2 Use case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.3 Use case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.4 Use case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.5 Use case 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xii



LIST OF FIGURES
(Continued)

Figure Page

10.6 Use case 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.7 Use case 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.8 Use case 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.9 Use case 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.10 Path generator web application. . . . . . . . . . . . . . . . . . . . . . . . . 96

10.11 Full program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.12 Assume query at label L1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.13 Generated path at L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.14 Result of running capture at L2. . . . . . . . . . . . . . . . . . . . . . . . . 99

10.15 Result of running capture at L3. . . . . . . . . . . . . . . . . . . . . . . . . 100

10.16 Running verify for few expression at L3. . . . . . . . . . . . . . . . . . . . 100

10.17 Capture the path at L4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.18 Verify at L4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiii



CHAPTER 1

LITERATURE REVIEW

1.1 Background

Ensuring that a program is correct with respect to a specification, involves the ability to

write a valid/ vetted specification, and to match it against a candidate program through a

meticulous analysis of the source code. This, in turn, requires a detailed definition of the

semantics of the programming language, and the application of precise criteria of refinement.

One feasible solution for this problem is to extract the function of a program through a static

analysis. In the first chapter, we review the research around programs verification, loop

invariant and symbolic execution solvers.

1.2 Verification and Validation

Despite several decades of research and development, and several attempts at technology

transfer, the routine correctness verification of software artifacts remains largely an elusive

goal. Several reasons can be cited for this failure [2, 90]:

1. The complexity of the task: To prove the correctness of a program requires that we
have a complete, valid, detailed specification of what the program is supposed to do;
this alone is a significant obstacle in practice, as generating specifications involves a
multitude of stakeholders, requirements, and constraints. In addition, one must capture
the semantics of the program (a challenging task in light of the size and complexity
of typical programs), and must use a definition of refinement to match the program
against the specification. [54, 82]

2. The lack of automated tools: The only way to control the complexity of the
correctness verification tasks is to deploy automated tools. But some aspects of
correctness verification are not automatable, and require creative human intervention.
This is the case of loop invariant generation, which has mobilized a vast amount of
research effort, with limited success. [4, 36, 42, 64, 83]

3. The Lack of Qualified Personnel: Learning about program correctness and
correctness verification several years after learning to program is better than nothing,

1



but is not very good; by the time students are exposed to ideas of program correctness,
they have been writing programs for several years, and have acquired programming
habits and reflexes that do not integrate correctness concerns; they may perceive
correctness concerns as a distraction that interferes with their operations and affects
their productivity.

Before we get started, it is worthy to have a quick look at the definition of verification

which has been a matter of debate since the early days of software invention [1]. In

the software terminology, there are two terms tied to software quality which plays a key

role to achieve the high quality and desired product, the verification and validation of the

software. The term verification refers to satisfying the formal specification [53]. In a

simple explanation, verification investigate if the software developer is building the product

correctly and right, means to check whether we are on right track to develop the software or

not. It generally involves formal checking, and reviewing the codes and designs without

practical testing. The verified software must meet the requirements which has been set out

at the start of production phase. On the other hand, the validation is about what the client

is supposed to receive. Hailpern in [53] well defines the validation as: ”validation is the

process of evaluating software, at the end of the development process, to ensure compliance

with requirements.” In, validation phase, the team usually apply different methods to test the

software, such as functionality, usability and performance test.

1.3 Abstract Interpretation

One of the general techniques for programs verification is abstract interpretation. This a

framework proposed by Cousot in the 1970s [24]. Based on his definition: ”The abstract

interpretation is a general theory for approximating the semantics of discrete dynamic

systems, for example, computations of programs. In particular, program analysis algorithms

can be constructively derived from these abstract semantics.” This provides a practical and

generic approach for static analysis, and recently has become a favourite methodology

for defining and formalizing approximation computations across many various fields of

computer science, like for instance in model checking [21], verification of distributed
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memory systems [51], security [87], type inference [81] and theorem proving [92]. However,

checking the undecidability of a program is still an interesting property in programs. The

halting problem is a simple example of undecidability of a program [10]. Most program

properties can be reduced to the halting problem. Therefore, we need to rely on the

approximations. The approximations could be sound (correct), meaning the system gives a

definite answer which is true, or the system responds as maybe which is not complete. To

be able to prove the correctness of the analyses, these approximations must be formalized.

In other words, Abstract Interpretation is a theory of approximation. The most popular

type of abstract interpretation imitates forward program execution in such a way that the

set of potential run-time states for all potential input values are finally over-approximated

with matching abstract values. Thus, abstract interpretation offers a technique for creating

invariants; it does so by generating a valid invariant in a finite amount of time for each

program point, including the beginning and end of loop bodies [3]. There is practical tool to

build static analyzer based on abstract interpretation from facebook, called SPARTA, which

tries to simplify the engineering process of abstract interpretation [38].

1.4 Symbolic Execution

Symbolic execution was introduced in order to concisely describe the inputs that cause each

component of a program to be executed or ”covered” [3]. Its early versions were developed

in same period of time as abstract interpretation [11]. Unlike abstract Interpretation that each

element of the abstract domain is an abstract value and approximates a group of “concrete”

values, i.e., values that a variable can take during the program execution, Symbolic Execution

uses symbolic expressions without concrete values to discover the potential program paths

and reasoning about the conditions that goes to this or that branch [3]. Each path reflects a

boolean relation and describes the conditions that are satisfied along with that path. There is

also a symbolic memory store that maps the space of programs into symbolic expressions [5].

To verify the paths, a model checker is usually used to check if there is any violation along
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the path or not. These model checkers, such as Z3, are basically a satisfiability modulo

theories (SMT) solver [6,26]. Numeric challenges related to symbolic execution is identified

in [5]. Due to huge cost for testing all of the paths, in traditional approaches, the execution

engine solves one path at time. This needs to prioritize the paths to execute the most

promising path first with some techniques like DFS or BFS. Other heuristic approaches are

presented in [13, 14, 17]. Since symbolic execution is typically used as a complement to

testing, or to support testing (e.g. test data selection), it has eluded researchers for decades.

It can help us to determine whether a certain properties is violated or not. The aspect of

interest could be checking of division by zero, NULL pointer dereferencing, any backdoor

existence, and so on. [5, 11, 57, 63]

1.5 Concolic Testing

Symbolic execution generally has been advocated as a method of developing small sets

that produce high coverage, or compact test input suites. But, a variety of problems have

prevented it from being widely used.

1. Among these, we mention: The source program may call library functions or make
system calls.

2. The underlying constraint solver may not be efficient or expressive enough to solve a
given path condition.

3. Even simple programs tend to generate huge numbers of paths.

Concolic testing (or dynamic symbolic execution) was introduced by [49] to solve the first

problem. Concolic, a combination of the words ”concrete” and ”symbolic,” refers to testing

that maintains both concrete and symbolic states while running a program. Consequently,

symbolic variables must be seeded with actual values. Concolic testing keeps track of

alternate path limitations while it runs. This may result in new execution paths. To determine

which are practical and to offer fresh and tangible inputs for the upcoming exploration path,

constraint solvers are used [3].
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Formally, we can define a concolic trace as a quadruple (ρ, π, σ, ϕ) where ρ : V ar →

V al is a concrete state and (π, σ, ϕ) is a symbolic trace. The concrete state ρ defines

assignments of concrete values to symbolic variables. Concolic testing and symbolic

execution share a lot of similarities in terms of semantics. Because symbolic variables

now accept tangible values, the primary distinction is that we actually run the program.

Concolic execution is therefore wholly deterministic. The conditions at each branch point

are evaluated at runtime as the program is being run, hence the constraint solver is not used

to do so. As opposed to that, it is employed to produce the actual values that will be applied

to the relevant symbolic variables in the subsequent concolic iteration.

Some of the problems with symbolic execution are addressed by Concolic testing. In

fact, by directly calling every function, we may execute concolic testing without modeling

library functions, system calls, or external applications. Due to the simplification of

constraints caused by the substitution of concrete values for symbolic variables, constraint

solving is more lightweight. We can just ignore or approximate unsupported restrictions,

which is significant. Completeness is compromised in this method, but symbolic execution

can go more easily as a result. This is completely fine in many practical applications as long

as ”good enough” coverage is attained in a timely manner.

1.6 Model Checking

As software systems get more complicated, the conventional methods for programs

verification could not be a applicable. Model checking as a new approach was introduced

to remove the manual proofs and provide a fully trusted technique [60]. The model

checking originally proposed by Clarke and Emerson, and separately by Sifakis [20],

for verifying temporal properties of finite state systems. This described in [20] as: ”This

verification technology provides an algorithmic means of determining whether an abstract

model—representing, for example, a hardware or software design—satisfies a formal

specification expressed as a temporal logic (TL) formula. Moreover, if the property does
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not hold, the method identifies a counterexample execution that shows the source of the

problem.”

A model checker’s inputs consist of a description of the system to be analyzed(often

in finite states) as well as a number of expected attributes, which are frequently stated as

formulae of temporal logic. The model checker indicates any violations or validates that the

properties are true. In the former situation, it offers a run that transgresses the property as a

counter-example. Such a run might offer insightful feedback and highlight design flaws [16].

Several branches of computing have benefited from model checking theories and

tools.. Wing in [108] presented algorithms to show how model checking can reveal some

possible attacks in computer networks. In this research, not only one counter example is

discovered, but they try to capture all the counterexamples, called a scenario graph. Each

path in this graph is considered as an attack. Similar works has been done related to security

of systems such as White [107] which compares two security models, and [80] which

proposes a secure method for DoS detection in wireless sensor networks. For database

systems and operations, model checking may also be employed. Chomicki in [19] tries

to connect both temporal databases and model checking verification. The input would be

all possible executions of the system and a query. In order to systematically examine all

program pathways, including those whose execution depends on data supplied by database

queries, Emmi and Majumdar [35] proposes concolic execution. Their method generates

both the program’s input data and relevant database records. To be able to test database

applications, Marcozzi in [73] define symbolic execution of SQL statements coupled with

other limitations in a program for generating test inputs.

The ability to evaluate large-scale systems using model checking necessitates the

use of effective data structures to represent items like sets of system states and transition

systems. These systems can be encoded as a set of binary variables like {b1, ..., bn}. To

achieve this, a propositional formula over {b1, ..., bn} could represents the system states,

and for the actions that shows the relevant actions for a pair of states such as (s, t) could
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be described as {b1, ..., bn, b′1, ..., b′n}. The unprimed variables shows the pre-state s and

the primed variables represent the post-state t [74]. The size of the representing formula

rely on the structure of the represented set but not on its size: for instance, the empty set

and the set of all states are represented by false and true, both of size 1. For this reason,

these representations are usually called symbolic, and model checking methods that work

on symbolic representations are called symbolic model checking [12]. This feature makes

symbolic model checking appropriate for hardware designs and other systems with a high

branching degree [45].

Out of all these advantages, there are some limitations that makes model checking

an idealistic but not realistic technique. We may have limited resources to analyze part

of the system not the whole. Even if the specification verified, there is a chance for some

hidden bugs in the system due to some simplification of the features. On the other hand, a

counter example might be reported because of wrong specification and not related to the

actual system [74].

1.7 Invariant Generation

One of the main challenges of symbolic execution solvers is loop summarizing, there

could be an endless number of created branches if the loop condition involves one or more

symbolic values. The explanation behind this problem, also known as path explosion, is

because each iteration of the loop can be thought of as an if-goto statement, which results in

a conditional branch in the execution tree [5]. To address this issue, partial summarizations

is presented in [50]. By invoking the dependencies between the conditions of the loop and

the symbolic variables, a loop summary uses pre- and post-conditions that are dynamically

produced throughout the symbolic execution. The symbolic engine can eliminate repeated

loop executions in the same program state by caching loop summaries, but it also makes

it possible to generalize the summary to encompass various loop executions under various

conditions. Early work were unable to handle multi-path loops or nested loops, which
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are loops with branches within their bodies. In [112] a general framework, called Proteus,

proposed for summarizing multi-path loops. It categorizes loops based on the ways in which

the values of the path conditions change over time and how the paths are interleaved within

the loop. The compaction technique described in [101] has a distinct flavor, since it produces

templates that declaratively represent the program states produced by a chunk of code as a

compact symbolic execution tree by analyzing cyclic paths in the control flowgraph. The

symbolic execution engine can explore a substantially smaller set of program states by

utilizing templates. The use of templates, which add quantifiers into the path constraints, has

the disadvantage of potentially placing a heavy weight on the constraint solver. One of the

remedies proposed to solve the loop complexities is loop invariants, a logical equation that

serves as an abstract description of a loop. The term invariant simply means an assertion

that holds before and after each iteration of the loop. let’s take a look at the Hoare [55]

definition: ”If the assertion P is true before initiation of a program Q, then the assertion R

will be true on its completion”. We simply call P and R as pre-condition and post-condition

respectively. have a simple loop as an example:

while (i <= 100)
{
x++;
y++;
}

one invariant relation for this loop is I : y − x == y′ − x′; here (x,y) denotes the

pre-condition and (x′, y′) the post-condition. This relation is true for the loop above, despite

how man times we iterate over the loop.

Inferring loop invariants has been approached in a variety of ways throughout the

literature [18, 23–25, 62, 65, 93] . The benefits of program verification technologies are,

however, severely constrained by the intractable nature of the issue and the difficulty of

even solving practical cases. A decision trees strategy which is proposed in [46] learn loop

invariants with simple linear features in the form of x + y ≤ c where c is a constant, so
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they are unable to solve for three variables like x+ y ≤ z. In LOOPINVGEN [89], these

features are systematically enumerated and generalized. A stochastic approach is carried

out over a number of constraint templates in [97]. Although certain features or templates

work effectively in some domains for them, they might not be able to adapt to other domains.

Code2Inv [98] developed a rich tool to capture the loop invariants based on reinforcement

learning. However, it has two drawbacks: 1- it works based on the trial and error and

decision making, hence it fails to solve wide range of problems. 2- most of the problems

that CODE2INV fails to solve can be represented in a compact disjunctive normal form

(DNF). However, CODE2INV is designed to produce loop invariants in the conjunctive

normal form (CNF). The reduction of loop invariants from DNF to CNF could incur an

exponential blowup in size. In [36] a system called Daikon presented which tries to generate

the loop invariant dynamically. Leveraging some machine learning techniques, Daikon

executes candidate programs and monitors their behaviour at some user-selected points

before reporting assertions that were true during the observed executions. Due to the nature

of experimental observations, the system produce probabilistic relations as the invariant

generations. For the goal of certifying the code, Denney and Fischer in [27] examine

created code against safety properties. In order to achieve this, they begin by comparing the

generated code to well-known code generator idioms, which they parametrize with pertinent

safety features. Invariants, such as loop invariants, are used to construct safety properties

and are deduced by propagation through the code. Colón et al. in [23] take into account loop

invariants of numerical programs as linear expressions and derive the coefficients of the

expressions by solving a set of linear equations. They expand their approach to non-linear

expressions in [94]. Through solving recurrence relations, Kovacs and Jebelean create

loop invariants in [65]. They set the loop invariants as solutions to recurrence relations

and derive closed forms of the solution using a theorem prover (Theorema) to aid in the

process. In [93] with strong theorem proving support, Rodriguez Carbonnell et al. derive

loop invariants by forward propagation and fixed point computing; they describe loop bodies
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as conditional concurrent assignments. In Mili [78], the difference between conventional

loop invariants and the reflexive transitive loop invariants are discussed. Aligator [58] is

another tool, previously implemented as a Mathematica package [69] and redesigned in

Julia programming language, intends to discover the polynomial invariants of so-called

extended P-solvable loops. Loop guards and test conditions are ignored in such loops,

resulting in non-deterministic loops with sequencing and conditionals [59]. The fact is

Aligator is unable to find the invariants if it is not a polynomial expression. Loopfrog [105]

is another approach which works based on termination analysis. This tool is a light-weight

static analyzer, which extends a loop summarization algorithm [66] in accordance with

abstract interpretation [24]. The key distinction between the prior strategy and loopfrog

is applying the transition invariants during summarization as opposed to state invariants.

Similarly LOOPUS [100] developed a tool which automatically computes loop bounds for

C programs. LOOPUS uses the LLVM compiler framework [67]. The irrelevant parts of the

program the termination of the analyzed loop is removed and then a SMT solver used to run

the queries about the program.

1.8 Functional Extraction

Discovery of the intention of a program, or as it is called the Program Function, has been a

challenging and interesting branch in software engineering [9, 15]. This, which rooted from

symbolic execution, can propose interesting opportunities to improve the state of the art in

software verification. The function extraction approach tries to transform a source code into

some symbolic equations. For instance, for a program P and a goal G, researchers try to

find an equivalent program P′ which has same output for G. This has been introduced as

program specialisation in [44] which intends to get the paths’ characteristic of the program

and produce an abstract interpretation of that path. Similarly, [103] describes a method

called lazy evaluation which implements the program exception as an abstract data type.
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More specifically, evaluating the loop behaviour has been the focus of much interest

by computer science researchers [75]. In [32] a heuristic approach is given to analyse and

find the function of a loop. As it works based on some heuristic hypothesis, not all the

evaluations could be correct. Some researches like Obdrˇz´alek, leverage the symbolic

execution to find some feasible path, from a start to a end label in a code, through a loop in

between [86]. Another method in [76], maps loop body statements to a concurrent structure

and then derives a lower bound for the loop to finally capture the function of the loop. To

find an approximation of a loop, [99] deploys a rational vector addition system with resets

(Q-VASR) that simulates the behaviour of an input loop, and then uses the reachability

relation of that Q-VASR.

We adopt the following definition: Given a program P on space S, we let the function

of P be the set of pairs (s, s′) such that if P starts execution in state s then it terminates

normally (i.e. after a finite number of steps, without raising any exceptional run-time

condition such as division by zero, array reference out of bounds, referencing a nil pointer,

overflow, underflow, etc) in state s′; by abuse of notation, we denote programs and their

functions by the same symbol.

Although transforming a program into a function(sequence of logical relation) has

been done in previous works [70, 84], there are some key differences and improvements in

our research by the following factors:

1. We do not focus only on loops, but we try to get the function for the whole program

2. To produce the intermediate relations, we use the Abstract Syntax Tree(AST) which
comes from running the input source code through a parser. On the other hand, the
previous works was done through the Concurrent Conditional Assignments.

3. To find the proper invariant relation, instead of a syntactic matching, we adopt a
semantic matching approach. Hence, we don’t have the difficulties of having a
complex source code. We can analyze any program with any number of nested
conditions and nested loops.

4. The combination of AST and semantic matching enabled us to analyze nested loops,
while the previous works were limited to analyze only simple loops.
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CHAPTER 2

MATHEMATICS FOR PROGRAMMING

The importance of mathematics for programming as an essential foundation is evident.

Hoare believes [56] ”the construction of computer programs is a mathematical activity like

the solution of differential equations, that programs can be derived from their specifications

through mathematical insight, calculation, and proof, using algebraic laws as simple and

elegant as those of elementary arithmetic. Such methods of program construction promise

benefits in specifications, systems software, safety-critical programs, silicon design, and

standards.” He provides four principle to for his claim:

1. Computers are mathematical machines that are perfectly calculable in every facet of
their conduct.

2. Computer programs are mathematical expressions.

3. A programming language is a mathematical theory that contains concepts, notations,
definitions, axioms, and theorems.

4. Programming is a mathematical activity, it requires traditional methods of mathe-
matical understanding, calculation, and proof.

While it is not very usual to include specification in software testing and verification,

there are some reasons that motivate us to discuss them:

1. Test Oracles are Built on specification:A crucial step in software testing and verifi-
cation is the construction of a test oracle, which entails choosing and implementing a
specification against which to test the program. This procedure is crucial in figuring
out how effective the test was.

2. Testing and Relative Correctness: We cannot discuss testing without discussing faults
(testing entails exposing, identifying, and/or removing faults); we cannot discuss
faults without discussing relative correctness (a program from which a fault has been
removed is more correct, in some sense, than the original faulty program); and we
cannot discuss relative correctness without discussing correctness (as correctness is

12



the ultimate form of relative correctness); and we cannot discuss correctness without
discussing testing (correctness is relative to a specification).

3. A Connection Between Verification and Testing: It is common to argue that static
verification and dynamic testing are complementary methods for ensuring the accuracy
or dependability of software products. However the results of these two methodologies
must be able to be articulated inside the same general framework for complementarity
to be meaningful; specifications make this feasible.

4. A Foundation for Hybrid Validation: An key point is sometimes missed in the ongoing
discussion about the relative benefits of static analysis versus dynamic testing: the
fact that a method is unsuccessful not because of any inherent flaw in the method,
but rather because it is being applied to the wrong specification. Using testing for
some aspects of the specification and static analysis for others may be a cost-effective
strategy for ensuring software quality. Only when both methods are created to work
with the same specification framework is this strategy feasible.

2.1 Relational Specifications

A software product’s specification is a representation of the attributes that the software

product must possess to serve its function. The specification is often created by identifying

all pertinent parties involved in the (current or future) software product, obtaining the

requirements that they need the product to satisfy, creating, merging, and putting these

requirements into a single document [79]. Typically specifications pertain to operational

requirements and functional requirements, the former essentially means any information

about how to run the system, monitoring, Logging, resource consumption, startup/shutdown

controls, while the latter is related to the actions and processes that the system is supposed

to do.

As a product, a specification must meet two conditions, which are as follows:

1. Formality: The specification must be described in such a way as to show precisely
what functional behavior is required.

2. Abstraction: The specification must describe what requirements the software product
must satisfy, not how to satisfy them. In other words, it must focus on what candidate
programs must do rather than how they must do it, the latter being the prerogative of
the designer.
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As a process (the process of identifying stakeholders, eliciting requirements, compiling

them, etc.), a specification must meet two conditions, which are as follows:

1. Completeness: The specification must capture all the relevant requirements of the
product.

2. Minimality: The specification must capture nothing but the relevant requirements of
the product.

2.2 Relational Mathematics

Here we want to to explain the specification principles. Although there are many different

specification languages used in research, some of which are rather commonly used in

industry, we opt to utilize mathematical notation and concentrate on models rather than

languages.

Relational mathematics’ role for operations research and informatics has been

recognized as what numerical mathematics does for engineering. It is meant to aid with

computing, modeling, and reasoning. Therefore, its applications are varied, spanning

from machine learning and spatial reasoning to psychology, linguistics, decision support,

and ranking [96]. In line with these topics, several attempts have been made to

formulate the problems that have so far been tackled using relational methods. In [95]

a programming language designed to transform the problems into relations terms. [71]

works on formalization of matrices and intends to build a method that connects matrices

to relational algebra and computer programming. Likewise, [7] presented an algorithm for

general Boolean matrix factorization.

2.2.1 Sets and relations

We provide variable names and related data types to express sets in a manner same to

programming (sets of values). Using the variable declarations to represent set S, for instance:
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Figure 2.1 Special relations.

x : X; y : Y ; z : Z,

then S is the Cartesian product X × Y × Z. Elements of S are triplets of elements of X, Y,

and Z and are indicated by the lower case letter s. We denote the X, Y, and Z components

of a given element s of S as x(s), y(s), and z, respectively (s). A relation on S is a subset

of the Cartesian product S × S; given a pair (s, s′) in R, we say that s′ is an image of s by

R. Special relations on S include the universal relation L = S × S, the identity relation

I= {(s, s′)|s′ = s}, and the empty relation ϕ = {}. We utilize the Cartesian plane to

describe relationships graphically, with set S shown on the ordinates (for s) and abscissas

(for s′). We represent an arbitrary relation on S, L, I, in Figure 2.1

2.2.2 Operations on relations

As a relation is a set, we are able to apply relations all the operations that are applicable

to sets, such as union (∪), intersection (∩) and difference (/). Moreover, the following

operations are defined:

• The converse of relation R is the relation denoted by R and defined by R̂ =
{(s, s′)|(s, s′) ∈ R}.

• The domain of relation R is the subset of S denoted by dom(R) and defined by
dom(R) = {s|∃s′ : (s, s′) ∈ R}.

• The range of relation R is the subset of S denoted by rng(R) and defined as the
domain of R̂.
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Figure 2.2 Complement and inverse.

Figure 2.3 Relational representation of sets.

• The (pre)restriction of R to (sub)set A is the relation denoted by A\R and defined
by A\R = {(s, s′)|s ∈ A ∧ (s, s′) ∈ R}.

• The postrestriction of R to (sub)set A is the relation denoted by RA/ and defined by
RA/ = {(s, s′)|(s, s′) ∈ R ∧ s′ ∈ A}.

Figure 2.2 shows a graphic description of a relation, its complement, and its converse. Given

a set A (subset of S), we define three relations of interest, which are as follows:

• The vector defined by A is the relation A × S.

• The inverse vector defined by A is the relation S × A.

• The monotype defined by A is the relation denoted by I(A) and defined by I(A) =
{(s, s′)|s ∈ A ∧ s′ = s}.

Figure 2.3 represents, for set A (a subset of S), the vector, inverse vector, and monotype

defined by A.
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Figure 2.4 Relational product.

Given two relations R and R′, we let the product of R by R′ be denoted by R•R′ (or RR′

, if no ambiguity arises) and defined by R •R′ = {(s, s′)|∃s” : (s, s”) ∈ R ∧ (s”, s′) ∈ R}.

The definition of relational product illustrates in Figure 2.4

If we denote the vector and the inverse vector defined by A by, respectively, ω(A) and

µ(A), then the following identities hold, by virtue of the relevant definition:

• ω(A) = I(A) • L

• µ(A) = L • I(A)

• ˆω(A) = µ(A)

• I(A) = ω(A) ∩ I = µ(A) ∩ I

When we want everything to be a relation, vectors are an easy (relational) approach to

describe sets. As we can see in Figure 2.5, the range of relation R can be represented by the

inverse vector LR and the domain of relation R can be represented by the vector RL, for

instance.

2.2.3 Properties of relations

We list the following among the properties of relations:

• A relation R is said to be total if and only if RL = L.

• A relation R is said to be surjective if and only if LR = L.

• A relation R is said to be deterministic if and only if R̂R ⊆ I .

17



Figure 2.5 Multiplying with universal relation.

• A relation R is said to be reflexive if and only if I ⊆ R.

• A relation R is said to be symmetric if and only if R ⊆ R̂.

• A relation R is said to be transitive if and only if RR ⊆ R.

• A relation R is said to be antisymmetric if and only if R ∩ R̂ ⊆ I .

• A relation R is said to be asymmetric if and only if R ∩ R̂ ⊆ ϕ.

• A relation R is said to be connected if and only if R ∪ R̂ = L

• A relation R is said to be an equivalence relation if and only if it is reflexive, symmetric,
and transitive.

• A relation R is said to be a partial ordering if and only if it is reflexive, antisymmetric,
and transitive.

• A relation R is said to be a total ordering if and only if it is a partial ordering and is
connected. some of these properties are illustrated in the Figure 2.6 which are taken
from [79].

2.3 Symbolic Equation Solving

The ability of modern computers to perform symbolic calculations in addition to the

purely numerical calculations for which they were initially created opens up fascinating

possibilities in the various engineering and scientific fields [91]. Systems that use symbolic

manipulation are essentially ”expert systems” that incorporate mathematical knowledge [8].

in addition to capacity to numerical calculations, they have the ability to manipulate abstract
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Figure 2.6 Properties of relations.

symbols that represent numerical values. Hence, they are more adaptable than conventional

programming languages that simply execute numerical computations, such FORTRAN and

BASIC. Recent years have seen a gradual increase in symbolic equation solver systems,

in part due to the accessibility of relatively affordable yet powerful personal computers

[8, 41, 85]. Three powerful systems, the older ALTRAN (ALgebra TRANslator) [22] and

the more contemporary MATHEMATICA [69] and MatLab [37], can be used to show the

aforementioned. Matlab and Mathematica provide Java programming API so we can call

their functions from the Java applications. However, based on the multiple analysis and

evaluations Mathematica is more effective than Matlab [33,104] for our purposes. There are

some reasons for this claim:

1. In terms of symbolic guiding, Mathematica is superior to Matlab and is simpler
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2. Mathematica is used in Procedural, modular, object-oriented, and functional, but
Matlab is used as a procedural language in maximum time

3. Mathematica excels at being a scientific calculator while Matlab is incapable of doing
so

4. MatLab is optimized for use by engineer, whereas mathematica is better adapted to
the needs of logicians.

2.3.1 Mathematica: modern technical computing

Mathematica is a symbolic mathematical calculation software that is also referred to as a

computer algebra program. This computational engine has been used in several scientific,

engineering, mathematical, and computing sectors. Stephen Wolfram invented and manage

the Wolfram Research of Champaign in Illinois. The programming language used in

Mathematica is The Wolfram Language which is so close to a scripting language.

To get more familiar with Mathematica, let’s review some of the major capabilities

and features of it [110]:

1. A Complex, Integrated System: there are more than 6,000 built-in functions in
Mathematica that cover every aspect of technical computing. These functions are
included in the fully integrated Mathematica system and all of them meticulously
integrated so that they function flawlessly together.

2. A tool for all majors: Mathematica is applicable in multiple technical computing field,
building on three decades of work, such as neural networks, machine learning, image
processing, geometry, data science, visualizations and much more.

3. Algorithm Power: several of the algorithms included in Mathematica were developed
with advanced development techniques and the special capabilities of the Wolfram
Language.

4. Strength for Industry: Mathematica is designed to offer industrial-strength features,
including parallelism, GPU processing, large-scale problems management, and strong,
effective methods in all fields.

5. Powerful Ease of Use: a system that is particularly simple to use, with predictive
predictions, natural language input, and more, has been made possible by Mathematica
by using its computational strength as well as the thoughtful design of the Wolfram
Language.
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Figure 2.7 Sum overview.

6. User-friendly environment: With Mathematica, you can arrange everything you do in
rich documents that include text, runnable code, dynamic images, user interfaces, and
more. This is possible thanks to the Wolfram Notebook Interface.

7. Solid Cloud Integration: With a distinctive and potent hybrid cloud/desktop
architecture, Mathematica is now fully connected with the cloud, enabling sharing,
cloud computing, and more.

2.3.2 Arithmetic operations

In this section we review some major arithmetic functions included in Mathematicas’

framework [109]:

Sum[f,i,imin,imax] : evaluates the sum Σimax
i=iminf (Figure 2.7 , 2.8)

Input: Sum [i2, i, 1, n]

Output: 1
6
n(n+ 1)(2n+ 1)

Product[f,i,imin,imax] : evaluates the product of Πimax
i=iminf (Figure 2.9 , 2.10)

Input: Product [i2, i, 1, n]
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Figure 2.8 Sum examples.

Output: (n!)2

Series[expr,{x,x0,n}] : Use Series to make a power series out of a function. The first

argument is the function(expr). The second argument has the form {var, pt, order}, where

var(x) is the variable, pt(x0) is the point around which to expand, and order is the order(n).

In mathematical terms, Series can be viewed as a way of constructing Taylor series for

functions [111]. (Figures 2.11 and 2.12)

Input : Series[Ex, {x, 0, 10}], E is the exponential constant ϵ (base of natural logarithms),

with numerical value ≃ 2.71828.

Output: 1 + x+ x2

2
+ x3

6
+ x4

24
+ x5

120
+ x6

720
+ x7

5040
+ x8

40320
+ x9

362880
+ x10

3628800
+O [x11]

Limit[f,x → x∗] : gives the limit limx→x∗ . (Figure 2.11, 2.12)

Input : lim
x→∞

1
x

Output: 0
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Figure 2.9 Product overview.

Figure 2.10 Product examples.

D[f,x] : gives the partial derivative ∂f/∂x (Figure 2.15, 2.16)

Input : D[xn, x]
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Figure 2.11 Series overview.

Figure 2.12 Series examples.

Output: nx(−1+n)

2.3.3 Logical operations

Solve[expr,vars] : attempts to solve the system expr of equations or inequalities for the

variables vars.(Figure 2.17 , 2.18)
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Figure 2.13 Limit overview.

Figure 2.14 Limit examples.

Input: Solve[x2 + ax+ 1 == 0, x]

Output:
{{

x → 1
2

(
−
√
a2 − 4− a

)}
,
{
x → 1

2

(√
a2 − 4− a

)}}

Reduce [expr,vars,dom] : does the reduction over the domain dom. Common choices of

dom are Reals, Integers, and Complexes (2.19 , 2.20)

Input: Reduce[x2 + y2 < 1, x, y]
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Figure 2.15 Derivation overview.

Figure 2.16 Derivation examples.

Output: −1 < x < 1 ∧ −
√
1− x2 < y <

√
1− x2
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Figure 2.17 Solve overview.

Figure 2.18 Solve examples.

Figure 2.19 Reduce overview.

Exists [x, cond, expr ] : states that there exists an x satisfying the condition cond
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Figure 2.20 Reduce examples.

Figure 2.21 Exists overview.

for which expr is True(Figure 2.21, 2.22)

Input: Exists [x, a ∗ x2 + b ∗ x+ c == 0 && x > 0]

Output: ∃x (ax
2 + bx+ c = 0 ∧ x > 0)

LogicalExpand [ expr ] : expands out logical combinations of equations, inequalities, and

other functions.(Figure 2.23, 2.24)

Input: LogicalExpand[p ∧ ¬(q ∨ r)]

Output: p ∧ ¬q ∧ ¬r
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Figure 2.22 Exists examples.

Figure 2.23 Logical expand overview.

Implies [ p,q ] : represents the logical implication p =⇒ q .(Figure 2.25, 2.26)

Input: Implies[p, q]

Output: p =⇒ q
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Figure 2.24 Logical expand examples.

Figure 2.25 Implies overview.
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Figure 2.26 Implies examples.
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CHAPTER 3

PROGRAM CORRECTNESS

The Program Correctness has been a serious concern since the early days of the invention of

programming languages. Too many software products are shipped every day with known

failures but undiagnosed / untreated faults. To prevent and solve these issues, significant

efforts have been put into developing strategies either for proving the correctness of computer

programs [31, 34, 72], or managing the process of producing the correct program [30].

Researchers have been interested to work toward programs’ correctness because this can

help us to prove that the program meet all the specifications, or they might find some

bugs [68]. In the past times, verifying the programs correctness was being done through

human works and manual proving but recently automatic tools has been offered which

works based on satisfiability-modulo-theories (SMT) solvers [68], or even some data mining

approaches to anticipate the program correctness [48].

3.1 Program Specification

We talked about the relational mathematics and its role in computer programs. In this part,

we want to explain how the relation can be used to model specifications. As we know,

specification is the crucial for the design and implementation of oracle. In general, They

serve to describe key concepts in software testing, such as program correctness, faults,

fault elimination, and relative correctness [28]. Assume we need a program to get a real

number and produce its square root. Beside the simplicity of the task, there could be various

conditions that affect on the code and we must consider. These conditions must be included

in the specification. Let’s check some of the varieties of this program:

1. Only nonnegative arguments will be submitted; the output is a (positive or nonpositive)
square root of the input value:
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R1 = {(s, s′)|s ≥ 0 ∧ s′2 = s}

2. Only non-negative arguments will be submitted; the output is the nonnegative square
root of the input value:

R2 = {(s, s′)|s ≥ 0 ∧ s′2 = s ∧ s′ ≥ 0}

3. Only nonnegative arguments will be submitted; the output is an approximation (within
a precision e) of a (positive or non-positive) square root of the input value:

R3 = {(s, s′)|s ≥ 0 ∧ |s′2 = s| < ϵ}

4. Only nonnegative arguments will be submitted; the output is an approximation (within
a precision e) of the non-negative square root of the input value:

R4 = {(s, s′)|s ≥ 0 ∧ |s′2 = s| < ϵ ∧ s′ ≥ 0}

5. Negative arguments may also be submitted; for negative arguments, the output is -1;
for nonnegative arguments, the output is a (positive or nonpositive) square root of the
input value:

R5 = {(s, s′)|s ≥ 0 ∧ |s′2 = s|} ∪ {(s, s′)|s < 0 ∧ s′ = −1}

6. Negative arguments may also be submitted; for negative arguments, the output is -1;
for nonnegative arguments, the output is the nonnegative square root of the input value:

R6 = {(s, s′)|s ≥ 0 ∧ s′2 = s ∧ s′ ≥ 0} ∪ {(s, s′)|s < 0 ∧ s′ = −1}

7. Negative arguments may also be submitted; for negative arguments, the output
is arbitrary; for nonnegative arguments, the output is an approximation (within a
precision e) of a (positive or nonpositive) square root of the input value:

R7 = {(s, s′)|s ≥ 0 ∧ |s′2 = s| < ϵ} ∪ {(s, s′)|s < 0}

8. Negative arguments may also be submitted; for negative arguments, the output
is arbitrary; for nonnegative arguments, the output is an approximation (within a
precision e) of the non-negative square root of the input value:

R8 = {(s, s′)|s ≥ 0 ∧ |s′2 = s| < ϵ ∧ s′ ≥ 0} ∪ {(s, s′)|s < 0}

9. Only nonnegative arguments will be submitted; the output must be within e of the
exact square root of the input (comparison with specification R4: Precision e applies
to the square root scale rather than the square scale):

R9 = {(s, s′)|s ≥ 0 ∧ |s′ −
√
s| < ϵ}
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We can continue and have more samples out of that initial program. But we learned

two important points from this example: The first is the significance of accuracy in defining

program requirements, and the second is the assumption that relationships allow us to obtain

the necessary precision.

1. Variable x is known to be in a; place in k an index where x occurs in a.

F1 = {(s, s′)|(∃h : 1 ≤ h ≤ N : a[h] = x) ∧ (a[k′] = x)}

2. Variable x is known to be in a; place in k the first (smallest) index where x occurs in a.

F2 = F1 ∩ {∀h : 1 ≤ h ≤ k′ : a[h] ̸= x}

3. Variable x is known to be in a; place in k an index where x occurs in a, while preserving

a and x.

F3 = F1 ∩ {(s, s′)|a′ = a ∧ x′ = x}

4. Variable x is known to be in a; place in k the first (smallest) index where x occurs in a,

while preserving a and x.

F4 = F2 ∩ {(s, s′)|a′ = a ∧ x′ = x}

5. Variable x is not known to be in a; if it is not, place 0 in k; else place in k an index

where x occurs in a.

F5 = F1 ∪ {(s, s′)|(∀h : 1 ≤ h ≤ N : a[h] ̸= x) ∧ k = 0}

6. Variable x is not known to be in a; if it is not, place 0 in k; else place in k the first

(smallest) index where x occurs in a.

F6 = F2 ∪ {(s, s′)|(∀h : 1 ≤ h ≤ N : a[h] ̸= x) ∧ k = 0}

7. Variable x is not known to be in a; if it is not, place 0 in k; else place in k an index

where x occurs in a, while preserving a and x.

F7 = F3 ∪ {(s, s′)|(∀h : 1 ≤ h ≤ N : a[h] ̸= x) ∧ k = 0}
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8. Variable x is not known to be in a; if it is not, place 0 in k; else place in k the first

(smallest) index where x occurs in a, while preserving a and x.

F8 = F4 ∪ {(s, s′)|(∀h : 1 ≤ h ≤ N : a[h] ̸= x) ∧ k = 0}

If, instead of F1, we had written the specification as follows:

F1′ = {(s, s′)|a[k′] = x′}

then it would be possible to satisfy this specification by the following simple program:

{k=1; x=a[1];}

If, instead of F1, we had written the specification as follows:

F1′′ = {(s, s′)|a′[k′] = x}

then it would be possible to satisfy this specification by the following simple program:

{k=1; a[1] =x;}

If, instead of F1, we had written the specification as follows:

F1′′′ = {(s, s′)|a′[k′] = x′}

then it would be possible to satisfy this specification by the following simple program:

{k=1;x =0; a[1] =0;}

Neither of these three programs is performing a search of variable x in array a.

3.2 Correctness Definitions

To have an insight about the correctness we refer to the explanations in [79].

We let space S be the set of natural numbers and let R be the following specification

on S:

R = {(0,0) , (0,1) , (0,2) , (1,1) , (1,2) , (1,3) , (2,2) , (2,3) , (2,4) , (3,3) , (3,4) , (3,5)};

We consider the following candidate programs (represented by their functions on S),

and we ask the question: which of these programs is correct with respect to R?
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P1 = {(0,1) , (1,2) , (2,3) , (3,4)};

P2 = {(0,1) , (1,2) , (2,3) , (3,4) , (4,5) , (5,6) , (6,7)};

P3 = {(0,0) , (1,2) , (2,4)};

P4 = {(0,0) , (1,2) , (2,4) , (4,8) , (5,10) , (6,12)};

P5 = {(0,0) , (1,2) , (2,4) , (3,6)};

P6 = {(0,0) , (1,2) , (2,4) , (3,6) , (4,8) , (5,10) , (6,12)};

We submit:

• Only programs P1 and P2 are correct with respect to specification R since they return
correct values for all the inputs of interest for R (which are inputs 0, 1, 2, 3).

• We say that programs P3 and P4 are partially correct with respect to R: they are not
defined for all relevant inputs (which are 0, 1, 2, 3) since they are not defined for 3;
but whenever they are defined for a relevant input (which is the case for 0, 1, 2), they
return a correct value.

• We say that programs P5 and P6 are defined with respect to R (or that they terminate
normally with respect to R): they produce an output for all relevant inputs (which are
0, 1, 2, 3), though for 3 they produce an incorrect output (6, rather than 3, 4, or 5).

As a second example, we let space S be defined by two integer variables x and y, and we let

R be the following relation (specification) on S:

R = {(s, s′)|x(s′) = x(s) + y(s)};

We consider the following candidate programs (written in C-like notation), and we ask

the question: which of these programs is correct with respect to R?

p1: {while (y ̸= 0) {x=x+1; y=y-1;}}

p2: {while (y > 0) {x=x+1; y=y-1;}}

p3: {if (y > 0) {while (y>0) {x=x+1; y=y-1;}}

else {while (y < 0) {x=x-1; y=y+1;}}}

Before we make judgments on the correctness of these programs, we compute their

respective functions:
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p1 = {(s, s′)|y ≥ 0 ∧ x′ = x+ y ∧ y′ = 0},

p2 = {(s, s′)|y ≥ 0 ∧ x′ = x+ y ∧ y′ = 0} ∪ {(s, s′)|y < 0 ∧ x′ = x ∧ y′ = y},

p3 = {(s, s′)|x′ = x+ y ∧ y′ = 0}.

We submit:

• That p1 is partially correct with respect to R; it is not (totally) correct because it
is not defined for negative values of y; but it is partially correct with respect to R
because whenever it is defined (for non-negative values of y), it satisfies specification
R (computing the sum of x and y into x).

• That p2 is defined with respect to R; it is not totally correct because for negative y it
fails to compute the sum of x and y into x; but it is defined because it produces a final
state for all relevant initial states (which, in the case of R, are all states in S).

• That p3 is totally correct with respect to R because it is defined for all relevant initial
states and satisfies specification R for all relevant states, by computing the sum of x
and y into x.

As a third example, we consider the following program on space S defined by integer

variables x and y:

p: {while (y ̸= 0) {x=x+1; y=y-1;};}

and we consider the following specifications:

R1 = {(s, s′)|x′ = x+ y}

R2 = {(s, s′)|x′ = x+ y ∧ y′ ≥ 0}

R3 = {(s, s′)|x′ = x+ y ∧ y′ > 0}

R4 = {(s, s′)|x′ = x+ y ∧ y′ > 10}

R5 = {(s, s′)|y ≥ 0 ∧ x′ = x+ 1 ∧ y′ = y − 1}

R6 = {(s, s′)|y = 1 ∧ x′ = x+ 1 ∧ y′ = y − 1}

R7 = {(s, s′)|x′ = x+ 1 ∧ y′ = y − 1}

As a reminder, consider that the function of program p is:

P = {(s, s′)|y′ ≥ 0 ∧ x′ = x+ y ∧ y = 0}
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Whence we submit:

• Program p is not correct with respect to R1 because it does not terminate for all
relevant initial states (which, according to specification R1 are all initial states).

• Program p is correct with respect to specifications R2, R3, R4, and R6. For all
these specifications, the program terminates normally for all relevant initial states and
delivers a correct final state.

• Program p is defined with respect to specification R5; it is defined for all relevant
inputs (which are states such that y ≥ 0), but it is not partially correct, since it delivers
a different output from what specification R5 demands.

• Finally, program p is neither correct, nor partially correct, nor defined with respect to
specification R7.

We are now ready to cast the intuition gained through these examples into formal

definitions.

Definition : Correctness Let R be a specification (relation) on space S and let p be a

program on space S whose function we denote by P. We say that program p is correct (or

totally correct) with respect to R if and only if:

∀s : s ∈ dom(R) ⇒ s ∈ dom(P ) ∧ (s, P (s)) ∈ R

Definition: Partial Correctness Let R be a specification (relation) on space S and

let p be a program on space S whose function we denote by P. We say that program p is

partially correct with respect to R if and only if:

∀s : s ∈ dom(R) ∧ s ∈ dom(P ) ⇒ (s, P (s)) ∈ R

Note that partial correctness provides for the correct behavior of the program only

whenever the program terminates; so that a program that never terminates is, by default,

partially correct with respect to any specification. Despite this gaping weakness, partial

correctness is a useful property that is often considered valuable in practice.

Definition: Termination Let R be a specification (relation) on space S and let p be a
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program on space S whose function we denote by P. We say that program p is defined (or

terminates) with respect to R if and only if:

∀s : s ∈ dom(R) ⇒ s ∈ dom(P )

We conclude this section with a simple proposition, which stems readily from the

definitions.

Proposition: Correctness Properties Let R be a specification (relation) on space S and let p

be a program on space S whose function we denote by P. Program p is totally correct with

respect to specification R if and only if it is partially correct and defined with respect to R.

3.3 Correctness Verification

In this section, we provide ideas that express correctness in terms of formulas derived

from set theory. They are more manageable in reality than either the definitions or the

characterizations based on refining.

Proposition 1. Proposition: Correctness, Set Theoretic Formula: Let R be a specification

(relation) on space S and let p be a program on space S whose function we denote by P.

Program p is correct with respect to specification R if and only if

dom(R ∩ P ) = dom(R) ∩ dom(P )

Clarification of this formula: The set dom (R ∩ P) is the set of initial states for which

program p behaves as R mandates (see Figure 3.1). The set dom (R) ∩ dom (P) is the set of

states for which program p terminates and specification R has a requirement. Program p

is partially correct according to specification R if and only if it behaves with respect to R

whenever it terminates.

Proposition 2. Proposition: Termination, Set Theoretic Formula: Let R be a specification

(relation) on space S and let p be a program on space S whose function we denote by P.

Program p is defined with respect to R if and only if dom (R) ∩ dom (P) = dom (R).

This condition simply means that dom(R) is a subset of dom(P).
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Figure 3.1 Interpretation of dom(R ∩ P).

Illustration We review the examples from previous section to serve as illustrations of the

assertions stated, and we verify the formulae of these statements to make sure we arrive to

the same conclusions. We review the specification and the candidate programs of the first

example:

R = (0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5)

P1 = (0, 1), (1, 2), (2, 3), (3, 4),

P2 = (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7),

P3 = (0, 0), (1, 2), (2, 4),

P4 = (0, 0), (1, 2), (2, 4), (4, 8), (5, 10), (6, 12),

P5 = (0, 0), (1, 2), (2, 4), (3, 6),

P6 = (0, 0), (1, 2), (2, 4), (3, 6), (4, 8), (5, 10), (6, 12),

The Figure 3.2 shows, for each candidate program P, the values of dom R P , dom(R),

dom(P), and the correctness property of P: total correctness (TC), partial correctness (PC),

termination (T), or none (N). Indeed, these are the conclusions we had previously drawn

from the first scenario.

For the second example, we list the specification and programs, then we draw the same
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Figure 3.2 Correctness properties for example 1.

Figure 3.3 Correctness properties for example 2.

table.

R = {(s, s′)|x(s′) = x(s) + y(s)};

P1 = {(s, s′)|y ≥ 0 ∧ x′ = x+ y ∧ y′ = 0};

P2 = {(s, s′)|y ≥ 0 ∧ x′ = x+ y ∧ y′ = 0} ∪ {(s, s′)|y < 0 ∧ x′ = x ∧ y′ = y};

P3 = {(s, s′)|x′ = x+ y ∧ y′ = 0};

In fact, these are the conclusions we had already drawn for the second scenario.

We had a single program and several requirements for the third example, which we

describe below:
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Figure 3.4 Correctness properties for example 3.

{p: {while (y != 0) {x=x+1; y=y-1;};}

R1 = {(s, s′)|x′ = x+ y};

R2 = {(s, s′)|y ≥ 0 ∧ x′ = x+ y};

R3 = {(s, s′)|y > 0 ∧ x′ = x+ y};

R4 = {(s, s′)|y > 10 ∧ x′ = x+ y};

R5 = {(s, s′)|y ≥ 0 ∧ x′ = x+ 1 ∧ y′ = y − 1};

R6 = {(s, s′)|y = 1 ∧ x′ = x+ 1 ∧ y′ = y − 1};

R6 = {(s, s′)|x′ = x+ 1 ∧ y′ = y − 1};

We already know that the function of program p is P = {(s, s′)|y ≥ 0x′ = x+ y ∧ y′ = 0 },

and the domain of P is {s|y ≥ 0;} for each specification R we write, in the Figure 3.4, the

values of dom (R ∩ P) , dom(R), and dom(P), then make a conclusion about the correctness

properties of P according to the specification in question.
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CHAPTER 4

FROM C-LIKE PROGRAMS TO PROGRAM FUNCTIONS

4.1 A Three Step Transformation

In this part we discuss the process by that we generate the program function in three steps.

Our tool automatically read and produce the summarized program in a series of relations

which we call it program function. These steps are :

1. J2A: Mapping Java Code onto an Abstract Syntax Tree

2. A2M: Mapping each node of the Abstract Syntax Tree onto an equation between
program states

3. M2F: Deriving the Program Function from the Aggregate Equations

4.2 J2A: Mapping Java Code onto an Abstract Syntax Tree

Working on Abstract Syntax Tree (AST) is not a new research topic. There has been

numerous applications for AST such as finding the bugs in the source code [39] or

transformation a C code to another language [88]. Overbey in [88], tried to make a fully

re-writable AST that can be generated automatically from an annotated grammar, and then

using the AST to transform the source code into target language. [40] designed a system

to take a general, language independent AST and convert it into a more specific language

dependent model. Similarly [106] generates a Java code from a transformation of UML to

AST and AST to Java. Although all these research has been contributed very well to the use

the AST effectively, none of them could reduce the complexity of the program. It means,

even the output program still could be hard to read and complicated. We tried to transform

the input program into a few lines of formula, that is by far easier to read, comparing to the

whole source code.
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In the first step, a java source code is given to a standard Java parser [102]. In its

most basic form, the JavaParser library enables the interaction with Java source code in a

Java context as a Java object representation. We refer to this object representation more

formally as an Abstract Syntax Tree (AST). Additionally, it offers what it is called as ”Visitor

Support,” a convenient way to browse the tree. The ability to change the source code’s

fundamental structure is the library’s final key feature. Developers now have the ability

to create their own code generation tools by writing this to a file. We will talk about Java

Parser in detail in Chapter 9.

To elaborate more, we provided a simple but complete program with equivalent java

Parser AST. In the next section we will see how to traverse this tree to map each node to

relations.

public class Main
{
public static void main(String argv[])
{

int x,y,z,w;
y=z+x;
x=x+y;
if (x>y+z)
{

y=y+z;
if (w>y)
{w=x+4;}
else
{

if (x<5)
{

z=y+88;
}

}
}
else
{z=y*3;}

}
}
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Figure 4.1 Abstract syntax tree for sample program.

4.3 A2M: Mapping Each Node to an Equation

As explained previously, we used the java parser for the first step in our tool. After reading a source

code as an input of our program, we need to traverse the whole AST in order to evaluate each node

and transform them into an equation of pre-post state. Next is an example of pre-post state equations

which means the initial and final state.
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assume we have two assignment expressions:

y = z + x;

x = x+ y;

we set the final values of the variables as xP and yP. After running this two lines of code (in order)

we will have:

yP = z + x;

xP = 2 ∗ x+ z;

While we are traversing the AST, each node must be properly converted into an equation. The AST

is represented as a data structure in object oriented format. Each item of a program like variables,

statements, functions etc, are inherited from a base Node class. There are multiple attributes for each

type of node. Each node has a block or scope and the items like expressions or statements are stored

in a list of children nodes. Then, at each node we can iterate over the children list, find the type of

the node and map them to a series of pre-post state relations in the Wolfram language syntax. In the

next chapters we will talk about how this mapping is implemented.

Simplify[Reduce[Reduce[Exists[{xPP,yPP,zPP,wPP},
Exists[{xP,yP,zP,wP}, xP==xPP&&yP==yPP&&zP==zPP&&wP==wPP&&
Reduce[Exists[{xPP,yPP,zPP,wPP},
Exists[{xP,yP,zP,wP},xP==xPP&&yP==yPP&&zP==zPP&&wP==wPP&&
yP==x+x&&xP==x&&zP==z&&wP==w]&&
Exists[{x,y,z,w},x==xPP&&y==yPP&&z==zPP&&w==wPP&&
xP==x+y&&yP==y&&zP==z&&wP==w],{xP,yP,zP,wP},
Backsubstitution -> True]]
Exists[{x,y,z,w},x==xPP&&y==yPP&&z==zPP&&w==wPP&&
((x>y+z&&Reduce[Exists[{xPP,yPP,zPP,wPP},
Exists[{xP,yP,zP,wP},xP==xPP&&yP==yPP&&zP==zPP&&wP==wPP&&
yP==y+z&&xP==x&&zP==z&&wP==wPP] &&
Exists[{x,y,z,w},x==xPP&&y==yPP&&z==zPP&&w==wPP&&
((w>y&&wP==x+1&&xP==x&&yP==y&&zP==z) ||
(!w>y&&((x<5&&zP==y+88&&xP==x&&yP==y&&wP==w)||
(!x<5&&xP==x&&yP==y&&zP==z&&wP==w)))))]],
{xP,yP,zP,wP},Backsubstitution -> True]) ||
(!x>y+z&&zP==z+3&&xP==x&&yP==y&&wP==w))]],{xP,yP,zP,wP},
Backsubstitution -> True, {xP,yP,zP,wP}]
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Elements[{x,y,z,w,xP,yP,zP,wP}Integers]]/.ConditionalExpression->And

The above relation is generated in our tool. It simply shows a production of two consecutive

expression. The xP of first expression is applied and used for the second expression as x.

4.4 M2F: Equations to Program Function

The third steps is to find the program function through resolving the equations from previous step.

By resolving means, finding the the final states as a function of the initial states, for each variable. To

solve these equations we used a Mathematica equation solver [69]. After running the above relations

on Mathematica notebook, (SHIFT+ENTER to execute the command on Mathematica notebook). It

solves these equation; and we call this output as the function of the program. Therefore, if you give

any input to (x,y,z,w) and run the program, the final values for x and y will be same as (xP,yP,zP,wP),

means we can find the final state of variables without running the program. Our tool generates

a formula which has same output as if we run the actual program. In Figure 4.2, we can see the

generated output on Mathematica software and Figures 4.3 and 4.4 shows simplified and Tabular

formats for the same output.
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Figure 4.2 Mathematica output.

Figure 4.3 Tabular output-type 1.
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Figure 4.4 Tabular output-type 2.
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CHAPTER 5

INVARIANT RELATIONS

The sample we analyzed in previous chapter was relatively easy. If we are evaluating a program

with a loop, or even a nested loop, it is not as easy as a few expression production. We need to run

some extra processes to find the function of the loop first. But let’s analyze how we can get the loop

function step by step.

5.1 Loop Function

We achieved the program function in last chapter, as a relation of pre-post state. But how about a

loop? we can get a similar relation for a loop as the function of the loop. It means what would be the

final state for the loop variables. The function of a loop can be achieved from Theorem 1.

Theorem 1. Given a while loop w: {while (t) {b}} on space S, the function of w is the

function on S defined as:

W = (T ∩B)∗ ∩ T̂ ,

where B is the function of b and T is the vector defined by predicate t, i.e. T = {(s, s′)|t(s)}.

Without noticing the details, we can check few loops and their equivalent functions.

Program 1:

public class Main
{

public static void main(String argv[])
{

int k, n, f;
while (k != n)
{

f = f * k;
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k = k + 1;
}

}
}

Function:

W = {(s, sP )|k <= n ∧ nP == n ∧ kP == n+ 1 ∧ fP == f ∗ (n!/(k − 1)!)}

Program 2:

public class Main
{
public static void main(String argv[])
{

int x ,y, i,n;
while (i != n)
{

x = x + y;
y = x - y;
i = i + 1;

}
}
}

Function:

W = { (s, sP )|i <= n ∧ xP == y ∗ Fibonacci[−i + n] + x ∗ Fibonacci[1 − i + n] ∧ yP ==

y ∗ Fibonacci[−1− i+ n] + x ∗ Fibonacci[−i+ n] ∧ iP == n ∧ nP == n}

Program 3:

public class Main
{

public static void main(String argv[])
{

int i, j, n, x,y;
int a[];
int b[];
while (i != n)
{

x = x + a[i];
i = i + 1;
y = y + b[j];
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j = j - 1;
}

}
}

Function:

W = { (s, sP )|i <= n ∧ iP == n ∧ nP == n ∧ xP == x ∧ jP == i + j − n ∧ xP ==

x+
∑n

k=i a[k] ∧ yP == y +
∑i+j−n

k=j b[k] }

5.2 Invariant Relations

Since it is typically quite challenging in reality to compute the reflexive transitive closure of a relation,

this definition could be too difficult and not applicable to compute the function of a loop. We use

invariant relations as an alternative way.

Definition 1. Given a while loop w: {while (t) {b}} on space S, a relation R on S is said

to be an invariant relation of w if and only if R is a reflexive transitive superset of (T ∩B).

There are some properties of invariant relations that we can use to find the loop function

[76, 77]:

Proposition 3. (T ∩B)∗ is an invariant relation

Proposition 4. (T ∩B)∗ is the smallest invariant relation

Proposition 5. The intersection of two invariant relation is an invariant relation

Proposition 6. E = I ∪ T (T ∩B) is an invariant relation

As we stated in Chapter 1, an invariant relation of a while loop is a binary relation that contains

pairs of states that are separated by any number of loop iterations. This means, after any number of

the iteration and without considering the values of the variables, the invariant relation returns a true
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statement.

Now for the same examples of previous section we can see and verify the invariant relations:

Program 1:

public class Main
{
public static void main(String argv[])
{

int k,n,f;
while (k != n)
{
f = f * k;
k = k + 1;
}

}
}

Invariant Relations

R0 = {(s, sP )|n = nP}

R1 = {(s, sP )|k ≤ kP}

R2 = {(s, sP )|f/(k − 1)! = fP/(kP − 1)!}

R = {(s, sP )|x = xP ∧ k ≤ kP ∧ f/(k − 1)! = fP/(kP − 1)!}

If we run the loop, these relations holds between any states s and s′ that are separated by an arbitrary

number of iterations. expressions.

Program 2:

public class Main
{
public static void main(String argv[])
{

int x ,y, i,n;
while (i != n)
{

x = x + y;
y = x - y;
i = i + 1;

}
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}
}

Invariant Relations

R0 = {(s, sP )|xP = x∗Fibonacci[iP+1−i]+y∗Fibonacci[iP−i]∧yP = x∗Fibonacci[iP−

i] + y ∗ Fibonacci[iP − i− 1]}

R1 = {(s, sP )|i ≤ iP}

Program 3:

public class Main
{

public static void main(String argv[])
{

int i, j, n, x,y;
int a[];
int b[];
while (i != n)
{

x = x + a[i];
i = i + 1;
y = y + b[j];
j = j - 1;

}
}

}

Invariant Relations

R0 = {(s, sP )|y +Σj
k=0 b[k] = yP +ΣjP

k=0 bP [k]}

R1 = {(s, sP )|x+Σn
k=i a[k] = xP +Σn

k=iP aP [k]}

R2 = {(s, sP )|a = aP}

R3 = {(s, sP )|b = bP}
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5.3 Invariant Relation and Loop Function

Having invariant relations for the loop, we are able to extract an approximation of the loop function.

With enough approximation we derive the function for the loop in full.

Theorem 2. Given a while loop w: {while (t) {b}} on space S, let R be an invariant

relation of w and let W be the function of the loop, then the following condition holds: W ⊆ R ∩ T̂ .

Based on this theorem, we provided a testing strategy works based on checking huge number

or test cases. So far, we claimed that our tool is able to transform a source code and find an equivalent

function for that program. Now, we intend to test it. The general structure for this test consists of

an oracle method, a driver method and the actual program. The method that runs the actual source

code, here it is P1, executes the actual program. The driver method runs too many possible test

cases. For each test case, the actual program runs, and after that initial and final values of variables

are sent to oracle method to test the function. In the end, we check the correctness of our claimed

function(included in oracle method). We did this approach for each of three programs and results

was True for all.

Program 1:

public class Main
{

public static int factorial(int x)
{

if (x == 0) return 1;
int r = x;
while (r > 0)
{

x *= (x - 1);
r--;

}
return x;

}
public static bool oracle(int k,int n,int f,int kP,int nP,int fP)
{
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return k0 <= n0 && nP == n0 && kP == n0 + 1 &&
fP == f * (factorial(n) / factorial(k - 1));

}

public static void P1(int& k, int& n, int& f)
{

while (k != n)
{

f = f * k;
k = k + 1;

}
}

public bool driver()
{

bool testResult = true;
for (int k0 = 1; k0 < 100; k0++)
for(int n0 = 1; n0 < 100; n0++)

for (int f0 = 1; f0 < 100; f0++)
{

int kt = k0, nt = n0, ft = f0;
P1(kt, nt, ft);
testResult = testResult && oracle(k0,n0,f0,kt,nt,ft);

}
return testResult;

}

public static void main(String argv[])
{

driver();
}
}

Function 1

W = R0 ∩R1 ∩R2 ∩ {(s, sP )|¬(k ̸= n)}

= {(s, sP )| ∧ k ≤ n ∧ nP == n ∧ kP == n+ 1 ∧ fP == f ∗ (n!/(k − 1)!)}

Program 2:

public class Main
{

public static int Fibonacci(int x)
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{
if (x <= 0) return 0;
if (x <= 2) return 1;
int f1= 1, f2= 1;
int r = x;
while (r > 2)
{

f2 = f2 + f1;
f1 = f2 - f1;
r--;

}
return f2;

}
public static bool oracle(int k,int n,int f,int kP,int nP,int fP)
{

return
i <= n && xP == y * Fibonacci(-i+n) + x * Fibonacci(1-i+n)
&& yP == y * Fibonacci(-1-i+n) + x * Fibonacci(-i+n)
&& iP == n && nP == n;

}

public static void P2(int& i, int& n, int& x, int& y)
{

while (i != n)
{
x = x + y;
y = x - y;
i = i + 1;

}
}

public bool driver()
{

bool testResult = true;
for (int i0 = 1; i0 < 100; i0++)

for(int n0 = i; n0 < 100; n0++)
for (int x0 = 1; x0 < 100;x0++)

for (int y0 = x0;y0 < 100;y0++)
{

int it = i0, nt = n0, xt = x0 , yt = y0;
P2(it, nt, xt, yt);
testResult =testResult &&
oracle(i0, n0, x0, y0, it, nt, xt, yt);

}
return testResult;

}
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public static void main(String argv[])
{

driver();
}

}

Function 2:

W = R0 ∩R1 ∩ {(s, sP )|¬(i ̸= n)}

= i ≤ n∧xP == y ∗Fibonacci[−i+n]+x∗Fibonacci[1− i+n]∧yP == y ∗Fibonacci[−1−

i+ n] + x ∗ Fibonacci[−i+ n] ∧ iP == n ∧ nP == n

Program 3:

public class Main
{

public static int sum(int a[], int start, int end)
{

int result=0;
for (int i=start, i<=end,i++)

result += a[i];
return result;

}
public static bool oracle(int i,int n,int j,int x,int y,int iP,

int nP,int jP,int xP,int yP)
{

return
i <= n && iP == n && nP == n && xP == x && jP == i + j - n
&& xP == x + sum(a,i,n) && yP == y + sum(b,j, i + j - n)

}

public static void P3(int& i, int& n,int& j, int& x, int& y)
{

int i, j, n, x,y;
int a[100];
int b[100];
while (i != n)
{

x = x + a[i];
i = i + 1;
y = y + b[j];
j = j - 1;

}
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}

public bool driver()
{

bool testResult = true;
for (int i0 = 1; i0 < 100; i0++)

for(int j0 = 0;j < 100; j0++)
for(int n0 = i; n0 < 100; n0++)

for (int x0 = 1; x0 < 100;x0++)
for (int y0 = 1;y0 < 100;y0++)
{

int it = i0,nt = n0,xt = x0 ,yt = y0,jt=j0;
P3(it, nt, jt, xt, yt);
testResult =testResult &&
oracle(i0,n0,j0,x0,y0,it, nt, jt, xt, yt);

}
return testResult;

}

public static void main(String argv[])
{

driver();
}

}

Function 3:

W = R0 ∩R1 ∩R2 ∩R3 ∩ {(s, sP )|¬(i ̸= n)}

= {(s, sP )|i ≤ n ∧ iP == n ∧ nP == n ∧ xP == x ∧ jP == i + j − n ∧ xP ==

x+
∑n

k=i a[k] ∧ yP == y +
∑i+j−n

k=j b[k]}
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CHAPTER 6

INVARIANT RELATION GENERATION

6.1 Elementary Invariant Relation

There is only one invariant relation that can be generated constructively, using the parameters T

and B of the loop, we call it as elementary invariant relation. This invariant can be obtained by

I ∪ T (T ∩B). We refer to it as the elementary invariant relation of. Hence, for each three loop we

analyzed above, we can present the elementary invariant relation.

elementary invariant relation for program 1

E = I ∪ {(s, sP )|(k ̸= n) ∧ kP == k + 1}

E = {(k == kP ∧ n == nP ∧ f == fP )||((k ̸= n) ∧ kP == np)}

elementary invariant relation for program 2

E = I ∪ {(s, sP )|(i ̸= n) ∧ xP == x+ y ∧ yP == x ∧ iP == i+ 1}

E = (x == xP ∧ y == yP ∧ i == iP ∧ n == nP )||(i ̸= n ∧ iP == nP )

elementary invariant relation for program 3

E = I ∪ {(s, sP )|(i ̸= n) ∧ iP == nP}

E = (x == xP ∧ y == yP ∧ i == iP ∧ n == nP )||(i ̸= n ∧ iP == nP )

6.2 Recognizers

Beside elementary invariant relations, we provided a database of invariant relations, shown in Table

6.1 which we call it recognizer table. Of course the more recognizer we provide, the more loops we

may evaluate. The recognizers have been proved and tested manually. Here we are going to describe

how we prove the correctness of the recognizers. We want to show the relations R as the invariant

relation is reflexive transitive superset of the B which is the function of the loop’s body.
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1R1

Reflexive: x = x′ ⇒ x (mod c) = x′ (mod c)

Transitive: {(x, x′) ∈ R ∧ (x′, x′′) ∈ R ⇒ (x, x′′) ∈ R}

x (mod c) = x′ (mod c) ∧ x′ (mod c) = x′′ (mod c) ⇒ x (mod c) = x′′ (mod c) After

proving the reflexivity and transitivity of the relation, now we are checking whether B ⊆ R is true or

not. The B is the loop body function and R is the invariant relation. In the other words we want to

investigate if the below conclusion is right or not:

x′ = x+ c ⇒ x (mod c) = x′ (mod c) Simply we replace the x′ in right side of relation.

2R1

Reflexive: x = x′ ∧ y = y′ ⇒ ay − bx = ay′ − bx′

Transitive: ay − bx = ay′ − bx′ ∧ ay′ − bx′ = ay′′ − bx′′ ⇒ ay − bx = ay′′ − bx′′

x′ = x+ a ∧ y′ = y + b ⇒ ay − bx = a(y + b)− b(x+ a)

⇒ ay − bx = ay + ab− bx− ba

⇒ ay − bx = ay − bx

3R1

Reflexive: i ≤ i′ is reflexive, since i ≤ i is a tautology. The other two terms are of the form:

f(s)=f(s′). by construction, these define a reflexive transitive relation. To prove that B ⊆ R, we take

an element (s,s′) in B, and we prove that it is in R.

(s, s′) ∈ B

By definition:

= (i′ = i+ 1 ∧ x′ = x+ a[i] ∧ a′ = a)

by substitution

i <= i′ ∧ x′ +ΣN
k=i′a

′[k] = x+ a[i] + ΣN
k=i+1a[k] ∧ a′ = a

simplification
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Table 6.1 Sample Recognizers

ID State Space Condition Code Pattern Invariant Relation, R=

1R1 x: int; const c: int> 0; true x’=x+c {(s, s′)|x mod c = x′ mod c}

1R2 x: int; const c: int; true x’=x+c {(s, s′)|x× c ≤ x′ × c}

1R3 x: int true x’=x-1 {(s, s′)|x ≥ x′}

2R1: x, y: int; const a, b: int true x’ = x+a, y’ = y+b {(s, s′)|ay − bx = ay′ − bx′}

2R2: x, y: int; const a: int true x’ = x*a, y’ = y+x {(s, s′)|y(1− a) + x = y′(1− a) + x}

2R4: x, y: int; true x’=x+1; y’=y-y/(x+1) {(s, s′)|xy = x′y′}

2R5: x,y: int;const a,b: int; true x’ = x+a;y’=y*b; {(s, s′)| y

bx/a = y′

bx
′/a }

2R6: x,y: listType true y’=y.First(x),x’=Rest(x) {(s, s′)|y.x = y′.x′}

2R11 x, y: int x%2 = 0 x’=x/2, y’=y+1 {(s, s′)|y + log2(x) = y′ + log2(x
′)}

2R13 x, y: int x%4 = 0 x’=x/4, y’=y+2 {(s, s′)|y + log2(x) = y′ + log2(x
′)}

2R14 x, y: int x%c = 0 x’=x/c, y’=c*y {(s, s′)|xy = x′y′}

3R1 x, i: int true i’=i+1, a’=a, {(s, s′)|a′ = a ∧ i ≤ i′

a[N]: int x’ = x+a[i] ∧x−
∑N

k=i a[k] = x′ −
∑N

k=i′ a
′[k]}

3R2 x, i: int true i’=i-1,a’=a, {(s, s′)|a′ = a ∧ i ≥ i′

a[N]: int x’ = x+a[i] ∧x+
∑i

k=1 a[k] = x′ +
∑i′

k=1 a
′[k]}

3R3 i: int; x,y: sometype true i’=i-1, x’=f(x), y’=y+x {(s, s′)|y +Σi
k=1f

k(x) = y′ +Σi′
k=1f

k(x′)}

i <= i′ ∧ x′ +ΣN
k=i′a

′[k] = x+ΣN
k=ia[k] ∧ a′ = a

6.3 Recognizer Generation

To prove and generate the invariant relations, we use recurrence technique. We write the recurrence

equations for each variable. Then, to solve these equations, the recurrence variable will be eliminated

and by simplifying the remaining equation, the invariant will be achieved. To illustrate the procedure,

two recognizer generation are provided below.

Referring to table 6.1, we try to solve the 2R1 record. To do this, we write the equations multiple

times. In each equation, the x′ is replaced by the equivalent expression which achieved from previous
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relation.

x′ = x+ a, y′ = y + b =⇒ x′ = (x+ a) + a, y′ = (y + b) + b =⇒ x′ = (x+ a+ a) + a, y′ =

(y + b+ b) + b

Then after n iteration we will have:

x′ = x+ n ∗ a, y′ = y + n ∗ b

We can get the constant n from the first equation

n = (x′ − x)/a

and place it in second to get the final equation.

y′ = y+((x′−x)/a)∗b =⇒ a∗y′−a∗y = (x′−x)∗b =⇒ a∗y′−a∗y = (b∗x′−b∗x) =⇒

a ∗ y − b ∗ x = a ∗ y′ − b ∗ x′

Another instance is 3R1. In this record, the code pattern which reflects the function of the loop’s

body, is

i′ = i+ 1, a′ = a, x′ = x+ a[i]

This relation is achieved after one iteration of the loop. After n iteration, we will have:

x′ = x+
∑i+n−1

j=i a[j], i′ = i+ n =⇒ x′ = x+
∑i′−1

j=i a[j]

to conform the left side with the right side, we add the
∑i−1

j=0 a[j] to both sides. Then, we will get:

x′ +
∑i−1

j=0 a[j] = x+
∑i′−1

j=0 a =⇒ x′ −
∑i′−1

j=0 a[j] = x−
∑i′−1

j=0 a[j]

As we see, we could prove and find an equation based on the code pattern that we have.

6.4 Pattern Matching

To evaluate a loop node, we need some extra process to find the function of the loop. The function of

the loop has the same concept as we explained in previous chapters, the final state for each variable

of the loop. We showed how we can use invariant relations to get the loop function. But, how

63



can we derive the appropriate invariant relations for our loop? Unlike previous works that finds

the invariants with syntactic matching [76, 77], we adopt a new semantic matching approach. The

semantic matching is done by some codes we developed, encapsulated in Mathematica package.

Before getting into detail, we can check this semantic matching in a few steps:

1. finding the function of the loop body.

2. running the imply for the loop body function and each recognizer Implies[F, reci]

3. return and collect every recognizer that makes the imply True

The first step is done similar to a regular program without a loop, assuming we do not have a loop

here. Let’s review our previous example here with different variables.

while (k != n)
{

a = a + b;
b = a - b;
k = k + 1;

}

The function for the body of this loop is

aP == a + b && bP == a && kP == k + 1

Now in second step we intend to find the relevant invariant relation for this loop. As we see in

figure 6.1 each recognizer has three parts: first segment is the code pattern which could be possibly

part of the function of the loop’s body, second are the variables involved in this relation, and third is

the relevant invariant relation. In our work, we have three type of recognizers separated by number

of logical clauses: one clause, two clauses and three clauses. In variable segment, we have the initial

and final state for each variable along with its data type.
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{xP == x + y && yP == x && iP == i + 1, {{x, xP, "int"},
{y, yP, "int"}, {i, iP, "int"}},
xP == x*Fibonacci[iP + 1 - i] + y*Fibonacci[iP - i] &&
yP == x*Fibonacci[iP - i] + y*Fibonacci[iP - i - 1]}

Figure 6.1 Sample recognizer in our database

Pattern Matching Procedure:

The pattern matching approach is different from previous works. Finding the relevant invariant

is not done through some syntactic matching, i.e. string matching. Instead, we implemented a

comprehensive package, implemented with Mathematica language. The procedure starts from calling

the package function from our Java tool. the signature of the function provided below:

ComputeLFONE[Vars_,stateS_, T1_, F1_, OneRecList_,
TwoRecList_, ThreeRecList_, File1_]

the function takes few parameters and we explain each one in below:

• Vars: the variables that involved in the given loop. As we are traversing the Abstract Syntax
Tree, we store the declared variables in a symbol table map data structure. Hence, for each
scope we have the variables that are accessible.

• State (or space ): the state of variables in the same format as Figure 6.1, like {x,xP,”int”}

• T : the condition of the given loop

• F : the function of the loop’s body. We recursively investigate the nested scopes and find the
function of the body. This is explained in next chapters.

• RecList: three recognizers list are sent for further pattern matching. These lists are stored in a
separate file, as we call it Recognizer Database.

• File: output file to store and write the found invariant relation into

The first step in pattern matching procedure is to conform the formal variables of recognizers

with the actual variables coming from real code. For example, in the previous sample we have a and

b as actual integer variables, and there are x and y ,formal variables in the recognizer’s record. In

our code, we test and store all of the permutations of mapping formal variables to actual variables.
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Figure 6.2 Mapping from formal to actual variables.

For instance, one permutation is to change x to a and y to b, and another would be x to b and y to a.

In the end, we created a list of new relations from recognizers with this difference that the formal

variables are replaced with actual. This should happen at run-time and stored as a temporary list. In

Figure 6.2, a sample provided which shows how we transform the first part of recognizer to a new

one with actual variables with Mathematica code.

In the second step, we need to find which one of the changed recognizers, now with actual

variables, conform with the function of the loop’s body. To do this, we take advantage of another

Mathematica capability. Imply function, explained in chapter 2, can take two statements and check

whether P(first statement) does imply Q(second statement) or not. Any of the items that satisfies this

implication, will be an invariant relation candidate. But we need to conform the variables of this

invariant relation, the formal variables, with the actual variables in our loop. Then, as final step, the

do the mapping of formal variables to actual ones and store it as one of the found invariant relations.

As we see in Figure 6.3, the first check returned True and it means this relation one of the

invariant relations.

The last step is nothing but return the third part of the recognizer record as the invariant

relation. But this time again, we need to return the invariant relation with actual variables. Hence,

the same mapping procedure to replace formal variables with actual variables performs here too. In

the end, we find and return:
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Figure 6.3 Sample Imply for pattern matching.

{aP == b Fibonacci[-k + kP] + a Fibonacci[1 - k + kP] &&
bP == b Fibonacci[-1 - k + kP] + a Fibonacci[-k + kP]}
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CHAPTER 7

PROGRAM SEMANTICS

In this chapter, we focus on the main step in the transformation of a program from source code to

functional representation: creating equations in Mathematica using an abstract syntax tree. This

transformation is carried out by traversing the abstract syntax tree recursively, starting at its root and

ending at its leaves. Each internal node causes recursive calls to be made to the appropriate subtrees.

We call this function A2M (Abstract syntax tree to Mathematica). To keep the information of each

node, we create a symbol table. The symbol table comprises four entries, as shown below. We keep a

symbol table in such a way that, whenever we process a node of the tree, the symbol table contains

all the variables that are active at that node.

There are two type of leaves in an abstract syntax tree: variable declarations and assignment

statements.

7.1 Variable Declarations

When A2M is called on a leaf that represents a variable declaration, say int x, then an entry for x is

added to the symbol table, and the call returns the following Mathematica equation: xP==Undef &&

yP==y. Where y represents all the variables in the symbol table prior to adding x, and Undef is an

undefined value, which we use as an indication that variable x has no defined value.

Table 7.1 Symbol Table

Type Name Primed 2-Primed
int x xP xPP
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7.2 Assignment Statement

When A2M is called on a leaf that represents an assignment statement, say x=E(s), where x is a

program variable and E is an expression that takes values that are compatible with the type of x, then:

A2M(x=E(s)) = defE(s) && xP==E(s) && yP==y,

where y represents all the variables in the symbol table other than x, and def E() is the predicate that

holds for all s such that expression E(s) can be evaluated.

As an example for an assignment: A2M(y=x+z) = (xP==x && yP==x+z && zP==z).

7.3 Bracketed Scope

When A2M is applied to an internal node (a subtree, AST) that represents a bracketed scope (such as,

e.g.: {int x; <statements>; } ), we consider that it has two subtrees:

• A subtree, say AST.dec, which contains the variable declarations that are internal to the scope;
we call them x1, x2, ... xk , and we use x to represent the aggregate <x1, x2, ...xk>.

• A subtree, say AST.code,which contains the executable code that is internal to the scope.

Then, application of A2M to AST yields the following Mathematica equation: A2M(AST)[s,sP]

= (Exists x, xP: A2M(AST.code)[<s, xi >, <sP, xPi >]).

The space of the program inside the bracket consists of components s and x while the space of the

bracketed block includes only component s.

7.4 Sequence

When A2M is applied to a node AST that represents a sequence, we consider that it has two subtrees,

which represent the first term and the second term of the sequence. Even if the source code includes
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a longer sequence than two statements, we assume that the AST arranges them in a binary tree

structure.

A2M(AST) = (Exists( sPP: sP2sPP(A2M(AST.first)) && s2sPP(A2M(AST.second)))),

where sP2sPP() transforms a Mathematica formula written in terms of (s, sP) by replacing each

instance of sP by sPP and s2sPP() transforms a Mathematica formula written in terms of (s, sP)

by replacing each instance of s by sPP. The result is a formula that is written in terms of (s, sP)

where s is the state of the program before the sequence and sP is the state of the program after the

sequence; even if we have a sequence of 100 statements, we only need one instance of sPP, since

the compositions are applied two at a time (through nesting). As for sP2sPP() and s2sPP, they are

defined simply as:

sP2sPP(F) = Exists (sP: F(s,sP) && sP==sPP . s2sPP(F) )

= Exists ( s: F(s,sP) && s==sPP ).

We can see this production in this example:

x = y + 2;

y = x ∗ 3;

taken from the Java program of Figure 1. We find:

A2M(x=y+2) =(xP== y +2 && yP==y)

sP2sPP(A2M(x=y+2)) = (yPP==y && xPP== y+2)

A2M(y=x*3) = (yP=x*3 && xP==x)

s2sPP(A2M(y=x*3)) = (yP=xPP*3 && xP==xPP)

The Mathematica code for the A2M(x=y+2;y=x*3;), which is the production of two expressions, is:

Simplify[
Reduce[Reduce[

Exists[{xPP, yPP},
Exists[{xP, yP},
xP == xPP && yP == yPP &&
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Reduce[Exists[{xPP, yPP},
Exists[{xP, yP},

xP == xPP && yP == yPP && xP == x && yP == y] &&
Exists[{x, y},
x == xPP && y == yPP && xP == x + 2 && yP == y]], {xP,

yP}, Backsubstitution -> True]] &&
Exists[{x, y},
x == xPP && y == yPP && yP == x*3 && xP == x]], {xP, yP},

Backsubstitution -> True], {xP, yP}],
Element[{x, y, xP, yP}, Integers]] /. ConditionalExpression :> And

Finally the result is:

(xP = y+2 && yP = 3*y + 6 )

7.5 If-Then

We assume that a node AST that represents an if-then statement has two subtrees, one that represents

the condition of the if and one that represents the then branch. For simplicity, we further assume that

the condition of the if is written in the syntax of Mathematica (if not, we need to apply A2M to it as

well). We write:

A2M(AST) = AST.cond && A2M(AST.then) ∥ !AST.cond && s==sP

7.6 If-Then-Else

We assume that a node AST that represents an if-then-else statement has three subtrees, one that

represents the condition of the if, one that represents the then branch, and one that represents the

else branch. For simplicity, we further assume that the condition of the if is written in the syntax of

Mathematica (if not, we need to apply A2M to it as well). We write: A2M(AST) = AST.cond &&
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A2M(AST.then) ∥ !AST.cond && A2M(AST.else).

7.7 While Loop

We assume that a node AST that represents a while-loop has two subtrees, one that represents the

condition of the loop (AST.T) and one that represents the body of the loop(AST.B). For simplicity,

we further assume that the condition of the loop is written in the syntax of Mathematica (if not, we

need to apply A2M to it as well). We write:

A2M(AST) = ElemIR(AST.T, A2M(AST.B)) && invR(AST.T, A2M(AST.B ) && !AST.T[sP]

Where ElemIR(T,B), where T is a unary predicate on space S and B is a binary predicate on space S,

represents the elementary invariant relation discussed in previous chapter, and is defined as follows:

ElemIR(T,B) = (s==sP) ∥ T(s) && Exists sPP: T(sPP) && B(sPP,sP).

Also, invR(T,B), where T is a unary predicate on S and B is a binary predicate, returns the invariant

relation generated from the database of recognizers, according to the process depicted in previous

chapter.

7.8 For Loop

We can make the for loop arbitrarily general, but for the sake of simplicity, we consider a for loop that

iterates for some integer variable (i) ranging from a low value (l) to a high value (h) in increments of

1. If we let AST be the node that represents this loop and AST.B the subtree that represents its loop

body, then we have:

A2M(AST) = Exists i, iP: i==l && iP==h+1 && invR(i ≤ h, iP=i+1 && A2M(AST.B)).

Note that variables i and iP are existentially quantified, so they are not part of the equation of

A2M(AST), because in fact they are not part of the states s and sP, respectively (in most languages,
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the index of a for loop is a local variable whose scope is limited to the loop). The invariant relation

generator InvR() will tie the incrementation of i to the execution of the loop body (through the

condition: iP==i+1 && A2M(AST.B)), and the condition (i==l && iP==h+1) will ensure that the

loop body gets executed the right number of times.
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CHAPTER 8

INVARIANT RELATIONS FOR AFFINE LOOPS

In this chapter, the semantics of loops whose loop body performs affine transformations on numeric

variables are captured by two generic invariant relations. We claim that these two invariant relation

(recognizer) are adequate to capture the semantics of any loop that contain affine equalities (also

known as Linear Relations) on numeric variables, regardless of their number.

8.1 A Unary Recognizer

We consider a while loop w of the form w: {while (t) {b}} and we assume that the function of its

guarded loop body (T ∩ B) is a subset of a relation of the form:

B′ = {(s, s′)|x′ = ax+ b},

for some variables x, constants a and b such that a is different from 0 and 1. Then the following is an

invariant relation for w:

R0 = {(s, s′)|fr(log|a|(|x′ + b
a−1 |)) = fr(log|a|(|x+ b

a−1 |))},

where fr(x) is the fractional part of x, |x| is the absolute value of x, and loga(x) is the logarithm base

a of x. In order to derive relation R0, we had to assume that a is different from 0 and 1.

by replacing the x with x′, we can check the correctness of R0.

fr(log|a|(|ax+ b+ b
a−1 |)) = fr(log|a|(|x+ b

a−1 |):

fr(log|a|(|
(a−1)∗(ax+b)+b

a−1 |)) = fr(log|a|(|x+ b
a−1 |):

fr(log|a|(|a
2x+ab−ax−b+b

a−1 |)) = fr(log|a|(|x+ b
a−1 |):

fr(log|a|(|
a(ax+b−x)

a−1 |)) = fr(log|a|(|x+ b
a−1 |):

fr(log|a|(|a|) + log|a|(|
(ax+b−x)

a−1 |)) = fr(log|a|(|x+ b
a−1 |):

fr(1 + log|a|(|x+ b
a−1 |)) = fr(log|a|(|x+ b

a−1 |):
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Table 8.1 Unary Recognizer

ID
Formal
Space, σ

Formal
Clause, γ

Condition,
α

Invariant Relation
Template, ρ

1R0
real x;
const real a,b x′ = ax+ b

a ̸= 0
∧a ̸= 1

fr(log|a|(|x+ b
a−1 |))

= fr(log|a|(|x′ + b
a−1 |))

fr(log|a|(|x+ b
a−1 |)) = fr(log|a|(|x+ b

a−1 |):

We know that fraction part of 1 is zero and has no effect. Hence we could prove that R0 is correct.

8.2 A Binary Recognizer

Now we consider a while loop w of the form w: {while (t) b} and we assume that the function of its

guarded loop body (T ∩ B) is a subset of two affine relations of the form:

B′ = {(s, s′)|x0′ = a0× x0 + b0},

B′′ = {(s, s′)|x1′ = a1× x1 + b1},

for some variables x0, x1, and constants a0, a1 and b0, b1 such that a0, a1 are different from 0 and 1.

Then the following is an invariant relation for w:

R1 = {(s, s′)|log|a0|(|x′0 +
b0

a0−1 |)− log|a1|(|x′1 +
b1

a1−1 |)

= log|a0|(|x0 +
b0

a0−1 |)− log|a1|(|x1 +
b1

a1−1 |)}

Extracting i from the second equation and replacing it in the first equation, we derive the following

invariant relation:

R′′
1 = {(s, s′)|b1 × log|a0|(|x′0 +

b0
a0−1 |) − x′1 = b1 × log|a0|(|x0 +

b0
a0−1 |) − x1}. This is clearly

a reflexive and transitive relation; to check that it is a superset of (T ∩ B), we can apply similar

approach and replace x′0 by a0x0 + b0 and x′1 by a1x1 + b1 in the expression on the left and get the

same expression on right side of the equation.
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Table 8.2 Binary Recognizer

ID
Formal
Space, σ

Formal
Clause, γ

Condition,
α

Invariant Relation
Template, ρ

2R1

real x0, x1;
const int
a0,a1,b0,b1

x′0 = a0x0 + b0
∧
x′1 = a1x1 + b1

a0, a1 ̸= 0
∧
a0, a1 ̸= 1

log|a0|(|x0 +
b0

a0−1 |)
−log|a1|(|x1 +

b1
a1−1 |)

=
log|a0|(|x′0 +

b0
a0−1 |)

−log|a1|(|x′1 +
b1

a1−1 |)

While(x<y)
{

x = 5*x + 3;
y = 3*y + 5;
w = 3*z + w;
z = z + 6;

}

Figure 8.1 Source code to test the invariant generator tools

Figure 8.2 Our invariant relation for program in Figure 8.1.

8.3 Comparison With Other Tools

We attempted to run a number of publicly available loop invariant generating tools on the same loop

for the sake of comparison to see how our findings compared to theirs. We ran these tools on the

program in Figure 8.1 and compared their results with our invariant which is shown in Figure 8.2
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1. Aligator. When we run Aligator [64] on the same program, it declares that there no P-solvable
solutions to this search, and returns no result, because it searches for loop invariants as
polynomials.

2. Daikon. Whereas our loop invariants can be parameterized in terms of the initial state, Daikon
requires that we specify the initial values of the program variables. We initialize the program
variables as follows: {x=0;y=90;z=0;w=1;}. Daikon returns the following loop invariant:
x < y ∧ x ̸= w ∧ y > z ∧ y > w ∧ z ̸= w.

3. Sting. When we run Sting [94] on this loop, with the same initialization as above, we find:
x ≤ 1003 ∧ y ≥ 90 ∧ −185x+ 403y ≥ 36270.

Multiple attempts to run other tools such as InvGen [52] and ESMBC [43], have failed.
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CHAPTER 9

IMPLEMENTATION AND DEMOS

In this chapter, we talk describe how this tool is implemented. There are two main sections, the

backend implementation and invariant relations semantic matching.

9.1 From Source Code to AST

As we explained in Section 3.3, there are three step to transform a source code into a function. We

mentioned that Java Parser is the tool that we used to get the abstract syntax tree of a program. Now,

we want to show more details about how Java Parser works and how information is organized and

represented.

In the inner representation of Java Parser, every vertex of the AST is stored as a node. This

presentation is not exactly same as the AST, but it contains some extra information about each node.

For example, MethodDeclaration is considered as a node and it has children nodes that represent the

methods name, its argument parameters (if it has them) and type, what it returns and it’s body(Figure

9.1). There are other language keywords used to define a method e.g. final, static, abstract etc. These

are defined as a modifier property on the MethodDeclaration itself. For the first step, the source code

is loaded and parsed through Java Parser and the abstract syntax tree is returned and ready to be

navigated. The output of parsed tree is returned as a CompilationUnit object and we can invoke its

function to traverse the tree and sub-trees.

CompilationUnit cu = StaticJavaParser.parse(new FileInputStream( SourceCodeFilePath));
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Figure 9.1 Method declaration in Java Parser.

9.2 From AST to Mathematica Equations

After we get the compilation unit which represent the AST, we are able to navigate it and evaluate

each node. The compilation unit includes information about every single part of the source code,

and provides a lot of information about each node (we don’t need all of these information here). To

navigate the AST, we used the Breadth First Search algorithm, included in Java parser framework.

expressionIterator = new Node.BreadthFirstIterator(cu);

while (expressionIterator.hasNext())
{

Node node1 = expressionIterator.next();
String nodeClass = node1.getClass().getSimpleName();

if (nodeClass.equals("MethodDeclaration") &&
((MethodDeclaration)node1).getNameAsString().equals("main")
== true)
{

...
}
else if (...)
{

...
}

}

As we described in Chapter 7, for each type of node there is an method to evaluate the node. This

method generates and returns the equivalent relation in Mathematica syntax. For instance, let’s take

a look at the method that we extract the variables from a variable declaration statement.
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public static List<Expression> VisitDeclaration
(VariableDeclarationExpr expr,

BlockStmt block, String addTo,String initValue)
{

NodeList<VariableDeclarator> list = expr.getVariables();
List<Expression> decExpr = new ArrayList<Expression>();
for (int i = 0; i < list.size(); i++)
{

block.variables.add( new Variable(list.get(i)
.getNameAsString(),
null,true));

BinaryExpr bin = new BinaryExpr();
NameExpr nm = new NameExpr(list.get(i).
getNameAsExpression().
asNameExpr().toString() + addTo);
bin.setLeft(nm);
bin.setRight(new NameExpr(initValue));
bin.setOperator(BinaryExpr.Operator.EQUALS);
decExpr.add(bin);

}
}

Figure 9.2 shows the Java Parser representation at runtime. Every node has a list of children nodes.

Based on the type of he node, there are some properties and sublists. This makes our work very easy

to find and navigate the expression under each node.

9.3 From Mathematica to Program Function

The last step is to collect and integrate all of the generated relations into one final relation. To

solve and transform this final relation to program function, we need to connect to the Mathematica’s

services and use its Java API. To make this, Mathematica program must be installed on local

machine and verified with a license. Figure 9.3 shows methods that we implemented to connect to

Mathematica.

To solve the final relation, we used Reduce to solve the equations. Since we want to find

the final state of variables (sP) based on initial state(s), we need to call Reduce along with a list
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Figure 9.2 Java parser runtime representation.

parameters which includes the primed variables.

There is another parameter, Backsubstitution → True which gives explicit values for the variables

and removed unnecessary dependencies between variables. We can see the final generated relation.

This complete relation is the input for the SendExpressionToKernel method.

Simplify[
Reduce[Reduce[

Exists[{kPP, nPP, fPP},
Exists[{kP, nP, fP},
kP == kPP && nP == nPP && fP == fPP && kP == k && nP == n &&
fP == f] &&

Exists[{k, n, f},
k == kPP && n == nPP && f == fPP &&
InvR[{k, n, f, kP, nP,

fP}, {{k, kP, "int"}, {n, nP, "int"}, {f, fP, "int"}},
kP != nP,
Reduce[Exists[{kPP, nPP, fPP},

Exists[{kP, nP, fP},
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Figure 9.3 Mathematica api connection.

kP == kPP && nP == nPP && fP == fPP && fP == f*k &&
kP == k && nP == n] &&

Exists[{k, n, f},
k == kPP && n == nPP && f == fPP && kP == k + 1 &&
nP == n && fP == f]], {kP, nP, fP},

Backsubstitution -> True]]]], {kP, nP, fP},
Backsubstitution -> True], {kP, nP, fP}],

Element[{k, n, f, kP, nP, fP}, Integers]] /.
ConditionalExpression :> And

9.4 A Full Sample

In this section, we provided a full sample that covers all of the functionalities in our tool. There are

three conditional branches, two single loops and one nested loop. There is also a member function

which is called from the main function. The target source code is shown below.

public class Main {
public static int f(int x) {

x = 7 * x + 7;
return x;
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}

public static void main(String argv[]) {
int x, y, t, i, j, k;
// read x, y, i, j, k, t;
t = i - j;
if (i > j) {

x = 0;
y = f(x);
while (i != j) {

i = i + k;
k = k + 1;
i = i - k;
y = f(y);

}
} else if (j > i) {

while (j != i) {
j = j + k;
k = k - 1;
j = j - k;
y = f(y);

}
} else {

while (t != i) {
for (int z = 0; z != y; z = z + 1) {

x = x + 1;
}
y = x - y;
t = t + 1;

}
Label L5;

}
k = i + j;
j = 2 * k;
Label L6;

}
}

Also, in figures 9.4, 9.5 and 9.6, we can see the Mathematica relations that we generate in our tool:

And finally, we have the function of this program:

(i<j&& yP == 1/6 (-7+7ˆ(i-j) (7+6 y))&& xP==x && i==iP
&& tP==i-j && i==jP && kP>=k && kP = k + j - i)
||(j>=0 && i==j && yP == y Fibonacci[-1+j]+ x Fibonacci[j]
&& xP == y Fibonacci[j]+ x Fibonacci[1+j] && iP == j

83



Figure 9.4 Mathematica relation1.

&& tP == j && jP == j && kP==k)
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Figure 9.5 Mathematica relation2.

Figure 9.6 Mathematica relation3.
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CHAPTER 10

INGREDIENTS FOR SCALABILITY

To support the user in analyzing and verifying the correctness of a program, we provide an automated

tool based on this research. The main goal of this tool is to provide an interactive environment for

users to submit queries about the functional attributes of the program, as written. The tool is a web

application consist of two windows: one window holds the source code, another one is like a console

that user can write queries and commands. We will show how finding the function of a program

could be used in multiple use-cases and scenarios.

10.1 Assume(), Capture(), Verify(), Establish()

Our tool is an interactive system which provides four functions to support the program analysis. Here

we explain the functions. These functions could be applied at a specific line of the code, which we

specified here as some labels, or invoked on a highlighted and named program part.

Assume():

This clause makes an assumption about the state of the program at some specific labels in the

source code or about a hilighted and named program part.. One application for this clause could

be to declare the precondition of a program (e.g., the conditions that we assume the inputs of a

program part or subroutine to satisfy). Other possible uses include, e.g. to make an assumption about

a function that is called in a program part, as a condition for proving a property about the program

part.
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Capture():

This statement may be used to characterize program states at a location in the source code (e.g., a

loop invariant) or to compute the function of a program part (e.g., the function of a loop).

Verify():

This clause is used to verify functional properties of program states. for instance, we may want to

verify that the states of a program at a specific position satisfy some conditions, given what we know

from the Assume() statements; or we may want to verify that a program part satisfies (is correct with

respect to) some specification.

Establish():

We want to employ program repair technology to give users the ability to fix a program portion

in accordance with a local specification. To illustrate, if the user tries to confirm that a software

component adheres to a specification but the Verify() query fails, the user can submit the Establish()

question with the same inputs as Verify() to see whether the suggested fixes make sense. Although

the technique for program repair struggles with massive programs [47], it could work well for little

pieces of programs. this function is not implemented, but is part of our plan for future research.

10.2 A Use Case

To understand better how these functions could be integrated into our tool, we provided a demo that

shows a series of commands and queries. The codes in this sample are in a simple Java program. The

tool, as it is shown in Figure 10.1, loads a source code as the input of the software(left window). As

we see there are three labels in the code, pre, post and inv. These points are marked and we can run

our queries at those specific positions. We intend to investigate the correctness of z = x ∗ y at the

label post. In figure 10.2 we run the first query to verify this equation. After running this command
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the system returns False, which means the assertion is not verified. We realized that x ∗ y needs both

variables to have value and be initialized. So as the next try in figure 10.3 we add an assumption

for variables. The system assigned these values to x and y. Adding these assumption, we verify the

equation z = x ∗ y. However, the user receives the False as the verification result 10.4. There is a

same problem with initialization of z. So in figure 10.5 we try to add assumption for z and again

check the same verification. Adding the initialization could solve the problem and we have verified

equation, but this time the system returns another message as the reachability is unverified. This

message tells us that we may or may not reach to post label but if it reaches, then it is verified. The

problem with previous unreachability is, the loop may never terminate. If the initial value for y is

negative, then the condition y ̸= 0 will always be true and the loop turns into an infinite loop. In

order to prevent the program from any infinite loop, we add one more assumption for y in Figure

10.6. Finally the system returns True for that query. In the next try we added one of the assumption to

the source code and remove it from the Assume() arguments. Running the same V erify(z = x ∗ y)

returns True as we expect. We can see this new query in Figure 10.7.

In order to prevent and remove the possibility of getting an infinite loop, we need to change the

source code and make the y variable positive. Therefore, we should not need to have any assumption

like y ≥ 0. We remove this assumption and run the verify function again. We expect to have verified

query as rest of the code and other assumptions are same as previous example.

Having our query verified, we intend to find the state of the program at inv label. This can be

achieved by calling the Capture() function. The output is what we call it the function of the program,

but here it is the function at the specific position 10.9. This simply means, if we run the program

while the initial value for x and y is x0 and y0, then what we will get in the end and after finishing

the loop is same as the function that we got from Capture(), both have same answer.

88



Figure 10.1 Use case 1, tool overview.

Figure 10.2 Use case 2.

10.3 Path and Path Function

In order to answer queries such as those, we discussed in the previous section, we may need to

compute the function of programs, program parts, and execution paths. Hence to proceed, we
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Figure 10.3 Use case 3.

Figure 10.4 Use case 4.

must define paths and path functions. The path is simply defined as a series of statements which

executed one by one, from a start point to end point. The statements could be routine programming

statements such as, variable declarations, assignment statements, Sequence statements, Conditional
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Figure 10.5 Use case 5.

Figure 10.6 Use case 6.

statements, alternation statements, iteration statements, Function calls and labeled statements. the

labels indicates the target position the code that we want to run our query on. For example, two labels

can be marked as the start and end point of a unique path. Here we have some definitions for the
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Figure 10.7 Use case 7.

Figure 10.8 Use case 8.

path.

elementary statement: we define an elementary statement which could be any of the following:

• An assignment statement

• A function call
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Figure 10.9 Use case 9.

• A condition test of the form:

– ( trueTest(condition C))

– ( falseTest(condition C))

With these definitions, we can now have more specific definition for a path. A path through a program

is a sequence of elementary statements separated by semicolons such that whenever two elementary

statements <es1> and <es2> follow each other in the path, then one of the following conditions

holds:

• <es1> and <es2> follow each other in the program,

• <es2> is derived from the condition of a conditional statement or an alternative statement or
an iterative statement which follows <es1> in the program

• <es1> is the last elementary statement of a conditional statement or an alternative statement
that precedes <es2> in the program

• <es1> is derived from the condition of an iterative statement that precedes <es2> in the
program

• <es1> has the form trueTest(C), where c is the condition of a conditional statement or an
alternative statement, and <es2> is the first statement of the then-branch

• <es1> has the form falseTest(C), where c is the condition of an alternative statement and
<es2> is the first statement of the else branch
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• <es1> has the form trueTest(C), where c is the condition of an iterative statement and <es2>
is the first statement of the loop body

As an application, we consider the following program.

{
int x; int y;
read(x); read(y); // assuming x>0, y>0
while (x!=y)
{

if (x>y)
{

x=x-y;
}
else
{

y=y-x;
}

}
write(x);
}

Sample paths through this program include the following:

• p0: int x; int y; read(x); read(y); ((x! =y)? false); write(x);

• p1: int x; int y; read(x); read(y); ((x! =y)? true); ((x>y)? true); x=x-y; ((x! =y)? false);
write(x);

• p2: int x; int y; read(x); read(y); ((x! =y)? true); ((x>y)? false); y=y-x; ((x! =y)? false);
write(x);

• p3: int x; int y; read(x); read(y); ((x! =y)? true); ((x>y)? true); x=x-y; ((x! =y)? true);
((x>y)? true); x=x-y; ((x! =y)? false); write(x);

Path Function: The function of a path is the function determined inductively using the

semantics of statements. The conditions that are part of the path execution has to be true or false. It

mean, if there are some conditions in a path from L1 to L2, these conditions evaluated as true or false.

The semantics of a condition is defined by the following equations:

{[c?true] = {(s, s′)|s = s′ ∧ c(s)}
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{[c?false] = {(s, s′)|s = s′ ∧ ¬c(s)}

In order to achieve the function of the path, we have to find the function of each statement and do

the product for the statements’ functions consecutively. As an illustration, consider the following

functions on a space S defined by integer variables x and y:

F1 = {(s, s′)|x > y ∧ x′ = 2x+ y ∧ y′ = 2y + x}

F2 = {(s, s′)|x > 2y ∧ x′ = 3x+ 2y ∧ y′ = 3y + 2x}

Then the product of these two functions yields the following result:

F1 ∗ F2 = {(s, s′)|x > y ∧ 2x + y > 2(2y + x) ∧ x′ = 3(2x + y) + 2(2y + x) ∧ y =

3(2y + x) + 2(2x+ y)}

10.4 Semantic Definition

Here we intend to to explore the semantic behind our the four functions.

@L: Assume(C): {(s, s′)|s′ = s ∧ C(s)}

@L: Capture():

Let P be the path from the first executable statement to L, we return two terms:

1. Reachability Condition: (∃ sP: (s,sP) ∈ P). This is the condition under which label is reached.

2. State Assertion: (∃ sP: s==sP ∧ (∃ s: (s,sP) ∈ P)). This is the strongest assertion we know to
hold at label L.

@L: Verify(C): State Assertion =⇒ C.

@L: Establish(C): change the code of the program in such a way that @L: Verify(C) returns TRUE.

10.5 Illustration and Demo

In this section, we show how the web application works. We run our functions on a simple program

and test multiple queries for different paths.
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Figure 10.10 Path generator web application.

Figures 10.10 and 10.11 shows an overview of the path generator application and the tested program.

The first query we want to run is add an assumption at label L1(Figure 10.12). We want to assume

that at that position the value of the variable i is positive. Therefore, we run the first command as

Assume(i ≥ 0).

Our second, try is to capture reachability condition and state of program at the label L2(Figure 10.14).

We can see in figure 10.13 how this path is generated. Similarly, in the next commands, we invoke

the capture for labels L3 and L4. We notice that the loop which precedes the L4 is an infinite loop

and will never terminate. Hence, we never reach to L4 and the results for the capture at L4 is False.

We can see these queries in figures 10.15 and 10.17. Moreover, we see the results of Verify function

in figures 10.16 and 10.18. We checked the few expressions at those labels and the get the results.
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public class Main {
public static int f(int x) {

x = 7 * x + 7;
return x;

}

public static void main(String argv[]) {
int x, y, t, i, j, k;
// read x, y, i, j, k, t;
Label L1;
t = i - j;
j = i + 5;
if (i > j) {

x = 0;
y = f(x);
while (i != j) {

i = i + k;
k = k + 1;
i = i - k;
y = f(y);
Label L2;

}
Label L3;

} else if (j > i) {
while (j != i) {

j = j + k;
k = k - 1;
j = j - k;
y = f(y);

}
;
Label L4;

} else {
while (t != i) {

for (int z = 0; z != y; z = z + 1) {
x = x + 1;

}
y = x - y;
t = t + 1;

}
Label L5;

}
k = i + j;
j = 2 * k;
Label L6;

}
}
;

Figure 10.11 Full program
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Figure 10.12 Assume query at label L1.
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public class Main {

public static void Assume(Boolean x) {
}

public static void FalseTest(Boolean x) {
}

public static void TrueTest(Boolean x) {
}

public static int f(int x) {
x = 7 * x + 7;
return x;

}

public static void main(String[] argv) {
int x, y, t, i, j, k;
Assume(i >= 0);
t = i - j;
TrueTest(i > j);
x = 0;
y = f(x);
TrueTest(i != j);
i = i + k;
k = k + 1;
i = i - k;
y = f(y);

}
}

Figure 10.13 Generated path at L2.

Reachability Condition:
j >= 0 && i > j
||
j < 0 && i >= 0

State Assertion:
( x == 0 && y == 56 && t > 0 && j >= 0 && i == -1 + j + t )

||
( x == 0 && y == 56 && t > 0 && -t <= j < 0 && i == -1 + j + t )

Figure 10.14 Result of running capture at L2.
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Reachability Condition:
i >= 0 && j < 0
||
i > 0 && 0 <= j < i
||
i >= 0 && j < i

State Assertion:
( x == 0 && j < 0 && t >= -j && y == (7*(-1 + 7ˆ(1 + t)))/6
&& i == j )

||
( x == 0 && j >= 0 && t > 0 && y == (7*(-1 + 7ˆ(1 + t)))/6
&& i == j )

||
( x == 0 && ((j < 0 && t >= -j && y == (7*(-1 + 7ˆ(1 + t)))/6
&& i == j) || (j >= 0 && t > 0 && y == (7*(-1 + 7ˆ(1 + t)))/6
&& i == j)) )

Figure 10.15 Result of running capture at L3.

@L3: Verify(t+j>=0)

True

@L3: Verify( i != j)

False

@L3: Verify(j>0)

False

Figure 10.16 Running verify for few expression at L3.
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@L4: Capture()

Reachability Condition:
False

State Assertion:
False

Figure 10.17 Capture the path at L4.

@L4: Verify(1 == 0)

True

Figure 10.18 Verify at L4.
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CHAPTER 11

CONCLUSION

The symbolic execution of programs is a valuable capability, due to its interest in software testing,

software maintenance, software verification, and broadly in any activity that involves software

understanding (software reuse, component based software development, etc). In this dissertation, we

presented our work developing and evolving a tool that takes source code and computes the function

that it defines between its initial states and its final states. Although the current solution is focused on

Java, we may create a version to support any other C-like language using a parser that converts the

source code into an abstract syntax tree. We owe our success to two effective artifacts of automated

software engineering: compiler generation technology and symbolic equation solvers;

our approach could be described in three steps:

1. J2A:Mapping the Source Code onto an Abstract Syntax Tree(AST) In order to run our
functions on each part of the source code, we need to get the abstract syntax tree of the
program. This is done by Java Parser, an open source framework which can parse a java
program and return a well object-oriented format of AST.

2. A2M: Mapping the Abstract Syntax Tree onto a Mathematica Equation We covered a few
type of node, such as control statements, assignments, loops and function calling. These nodes
are transformed into Mathematica equation. The relations shows the state of the program
before and after execution of the statement represented by each node.

3. M2F: Solving the Mathematica Equation to Derive the Program Function Once the
equations are generated in a Mathematica syntax, we can call Mathematica API to solve the
equations and return the final state of the program as a function of the initial state;

11.1 Contribution and Comparison With Previous Studies

The major differentiating feature of our approach is that, we capture the precise semantics of loops

in full, to the extent that (under the condition that) we have the essentials and enough invariant
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relations(recognizers) to match its code. To map and find the relevant invariant relation, we adopt a

semantic matching pattern to search and find the correct invariants relation for the given loop. This

approach is studied against the conventional syntactic matching strategy. The syntactic matching

approach that is taken in [70], tries to find an identical match between formal patterns of recognizers

and the actual output of (T ∩ B). The main problem of this idea is checking the invariant and code

pattern with a pure string matching. For example, if there are two code pattern like b = a+1− 1 and

b = a, these two are different and we need two different recognizer record. Each record has different

code pattern and same invariant relation. While in semantic matching, we use Imply function to

check if the invariant relation can be reached from a code pattern.

Another difference between string matching and our work is, we get the Abstract Syntax

Tree(ATS) of the source code and then navigate it node by node. This is against the idea of processing

the input as a simple string data type and process it line by line. The reason that gives more weight

to our work is, having AST, we do not need to think about how complex the program is. We are

able to analyze the source code with any number of nested conditional statements, any number of

function call, scope, loop and expression. However, with the string matching strategy, they could

only process some simple programs. To get the AST, we used Java Parser, a public tool that represent

a java source code as a tree data structure. In the AST, each part of the program is specified as a node

with complete information.

Another major difference between our work and [29] is, we generate a large Mathematica

relation which reflects the full source code. We apply same algorithm without caring about whether

the loop has too many nested conditions and scopes and expressions, or if it contains only few simple

expressions. However, if the loop has some if-then-else statement, [29] tries to create a union of

relations like below:
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(T ∩B) = B1 ∪B2 ∪B3 ∪ ... ∪Bk

Each union term reflects one conditional statement or scope. They try to run their pattern algorithm

separately for each union term. This idea is not efficient and is prone to loss of information because

it may not give us the smallest invariant relation. More limitation of this idea explained in [61].

In Chapter 10, we explained our tool development and features. The main functionality of the

program is to take a source code and find the function of the program. Besides this, we have four

functions, of which we have already implemented three, that helps to apply some queries and derive

the function of specific path of the program. Assume() function can put some assumption at one

particular line of the code, specified as a label. These assumptions could be initialized values for

variables, or some conditions for them. The Capture() can take the function at specific label. Also,

Verify() which checks and verify the given argument against the function at that label.

11.2 Future Work

There are some potential industry that could benefit from this work, such as sensitive systems, crypto

currency and financial firms. Two major reason could be behind this claim. First, we try to capture

what the program is intending to do. Hence, we are able to figure out the purpose of the program

without running the that program. This can prevent the failure or sabotage coming from malicious

codes. Second, we transform a program into a series of relations. This means, running time could

significantly reduced. for example a loop with O(N) running time mapped to a equation which works

in O(K), constant time.

Future prospects for this work involve enabling the analyzer to recognize and more complex

data structures and transform them into Mathematica relations. Adding more data structures, we

can cover and analyze wider range of programs. The second potential scale up is to enlarge the

database of recognizers. But we argue that the scale we are up against is not the size of programs,
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but rather the size of loops within programs. Hence, our scope of application is not limited by the

size of candidate programs, but rather by the size of the largest loop in the program;
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[69] José Guillermo Sánchez León. Mathematica® Beyond Mathematics: The Wolfram Language in The
Real World. 2017.

[70] Asma Louhichi, Wided Ghardallou, Khaled Bsaies, Lamia Labed Jilani, Olfa Mraihi, and Ali
Mili. Verifying while loops with invariant relations. International Journal of Critical
Computer-Based Systems, 2014.
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