8 research outputs found

    Estimation of the Interaction Forces in a Compliant pHRI Gripper

    Get PDF
    Physical human–robot interaction (pHRI) is an essential skill for robots expected to work with humans, such as assistive or rescue robots. However, due to hard safety and compliance constraints, pHRI is still underdeveloped in practice. Tactile sensing is vital for pHRI, as constant occlusions while grasping make it hard to rely on vision or range sensors alone. More specifically, measuring interaction forces in the gripper is crucial to avoid injuries, predict user intention and perform successful collaborative movements. This work exploits the inherent compliance of a gripper with four underactuated fingers which was previously designed by the authors and designed to manipulate human limbs. A new analytical model is proposed to calculate the external interaction forces by combining all finger forces, which are estimated by using the gripper proprioceptive sensor readings uniquely. An experimental evaluation of the method and an example application in a control system with active compliance have been included to evaluate performance. The results prove that the proposed finger arrangement offers good performance at measuring the lateral interaction forces and torque around the gripper’s Z-axis, providing a convenient and efficient way of implementing adaptive and compliant grasping for pHRI applications.This work was supported by the Universidad de Málaga, project UMA20-FEDERJA-052. Partial funding for open access charge: Universidad de Málag

    Dataset with Tactile and Kinesthetic Information from a Human Forearm and Its Application to Deep Learning

    Get PDF
    There are physical Human–Robot Interaction (pHRI) applications where the robot has to grab the human body, such as rescue or assistive robotics. Being able to precisely estimate the grasping location when grabbing a human limb is crucial to perform a safe manipulation of the human. Computer vision methods provide pre-grasp information with strong constraints imposed by the field environments. Force-based compliant control, after grasping, limits the amount of applied strength. On the other hand, valuable tactile and proprioceptive information can be obtained from the pHRI gripper, which can be used to better know the features of the human and the contact state between the human and the robot. This paper presents a novel dataset of tactile and kinesthetic data obtained from a robot gripper that grabs a human forearm. The dataset is collected with a three-fingered gripper with two underactuated fingers and a fixed finger with a high-resolution tactile sensor. A palpation procedure is performed to record the shape of the forearm and to recognize the bones and muscles in different sections. Moreover, an application for the use of the database is included. In particular, a fusion approach is used to estimate the actual grasped forearm section using both kinesthetic and tactile information on a regression deep-learning neural network. First, tactile and kinesthetic data are trained separately with Long Short-Term Memory (LSTM) neural networks, considering the data are sequential. Then, the outputs are fed to a Fusion neural network to enhance the estimation. The experiments conducted show good results in training both sources separately, with superior performance when the fusion approach is considered.This research was funded by the University of Málaga, the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, grant number RTI2018-093421-B-I00 and the European Commission, grant number BES-2016-078237. Partial funding for open access charge: Universidad de Málag

    Grasping Angle Estimation of Human Forearm with Underactuated Grippers Using Proprioceptive Feedback

    Get PDF
    In this paper, a method for the estimation of the angle of grasping of a human forearm, when grasped by a robot with an underactuated gripper, using proprioceptive information only, is presented. Knowing the angle around the forearm’s axis (i.e. roll angle) is key for the safe manipulation of the human limb and biomedical sensor placement among others. The adaptive gripper has two independent underactuated fingers with two phalanges and a single actuator each. The final joint position of the gripper provides information related to the shape of the grasped object without the need for external contact or force sensors. Regression methods to estimate the roll angle of the grasping have been trained with forearm grasping information from different humans at each angular position. The results show that it is possible to accurately estimate the rolling angle of the human arm, for trained and unknown people.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Intelligent Haptic Perception for Physical Robot Interaction

    Get PDF
    Doctorado en Ingeniería mecatrónica. Fecha de entrega de la Tesis doctoral: 8 de enero de 2020. Fecha de lectura de Tesis doctoral: 30 de marzo 2020.The dream of having robots living among us is coming true thanks to the recent advances in Artificial Intelligence (AI). The gap that still exists between that dream and reality will be filled by scientific research, but manifold challenges are yet to be addressed. Handling the complexity and uncertainty of real-world scenarios is still the major challenge in robotics nowadays. In this respect, novel AI methods are giving the robots the capability to learn from experience and therefore to cope with real-life situations. Moreover, we live in a physical world in which physical interactions are both vital and natural. Thus, those robots that are being developed to live among humans must perform tasks that require physical interactions. Haptic perception, conceived as the idea of feeling and processing tactile and kinesthetic sensations, is essential for making this physical interaction possible. This research is inspired by the dream of having robots among us, and therefore, addresses the challenge of developing robots with haptic perception capabilities that can operate in real-world scenarios. This PhD thesis tackles the problems related to physical robot interaction by employing machine learning techniques. Three AI solutions are proposed for different physical robot interaction challenges: i) Grasping and manipulation of humans’ limbs; ii) Tactile object recognition; iii) Control of Variable-Stiffness-Link (VSL) manipulators. The ideas behind this research work have potential robotic applications such as search and rescue, healthcare or rehabilitation. This dissertation consists of a compendium of publications comprising as the main body a compilation of previously published scientific articles. The baseline of this research is composed of a total of five papers published in prestigious peer-reviewed scientific journals and international robotics conferences

    Adaptive Force Controller for Contact-Rich Robotic Systems using an Unscented Kalman Filter

    Full text link
    In multi-point contact systems, precise force control is crucial for achieving stable and safe interactions between robots and their environment. Thus, we demonstrate an admittance controller with auto-tuning that can be applied for these systems. The controller's objective is to track the target wrench profiles of each contact point while considering the additional torque due to rotational friction. Our admittance controller is adaptive during online operation by using an auto-tuning method that tunes the gains of the controller while following user-specified training objectives. These objectives include facilitating controller stability, such as tracking the wrench profiles as closely as possible, ensuring control outputs are within force limits that minimize slippage, and avoiding configurations that induce kinematic singularity. We demonstrate the robustness of our controller on hardware for both manipulation and locomotion tasks using a multi-limbed climbing robot.Comment: Submitted to IROS 202

    Proprioceptive Estimation of Forces Using Underactuated Fingers for Robot-Initiated pHRI

    No full text
    In physical Human–Robot Interaction (pHRI), forces exerted by humans need to be estimated to accommodate robot commands to human constraints, preferences, and needs. This paper presents a method for the estimation of the interaction forces between a human and a robot using a gripper with proprioceptive sensing. Specifically, we measure forces exerted by a human limb grabbed by an underactuated gripper in a frontal plane using only the gripper’s own sensors. This is achieved via a regression method, trained with experimental data from the values of the phalanx angles and actuator signals. The proposed method is intended for adaptive shared control in limb manipulation. Although adding force sensors provides better performance, the results obtained are accurate enough for this application. This approach requires no additional hardware: it relies uniquely on the gripper motor feedback—current, position and torque—and joint angles. Also, it is computationally cheap, so processing times are low enough to allow continuous human-adapted pHRI for shared control

    Proprioceptive Estimation of Forces Using Underactuated Fingers for Robot-Initiated pHRI.

    No full text
    In physical Human-Robot Interaction (pHRI), forces exerted by humans need to be estimated to accommodate robot commands to human constraints, preferences, and needs. This paper presents a method for the estimation of the interaction forces between a human and a robot using a gripper with proprioceptive sensing. Specifically, we measure forces exerted by a human limb grabbed by an underactuated gripper in a frontal plane using only the gripper's own sensors. This is achieved via a regression method, trained with experimental data from the values of the phalanx angles and actuator signals. The proposed method is intended for adaptive shared control in limb manipulation. Although adding force sensors provides better performance, the results obtained are accurate enough for this application. This approach requires no additional hardware: it relies uniquely on the gripper motor feedback-current, position and torque-and joint angles. Also, it is computationally cheap, so processing times are low enough to allow continuous human-adapted pHRI for shared control

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world
    corecore