9 research outputs found

    Evaluation of a Computer-Aided Diagnosis System in the Classification of Lesions in Breast Strain Elastography Imaging

    Get PDF
    Purpose: Evaluation of the performance of a computer-aided diagnosis (CAD) system based on the quantified color distribution in strain elastography imaging to evaluate the malignancy of breast tumors. Methods: The database consisted of 31 malignant and 52 benign lesions. A radiologist who was blinded to the diagnosis performed the visual analysis of the lesions. After six months with no eye contact on the breast images, the same radiologist and other two radiologists manually drew the contour of the lesions in B-mode ultrasound, which was masked in the elastography image. In order to measure the amount of hard tissue in a lesion, we developed a CAD system able to identify the amount of hard tissue, represented by red color, and quantify its predominance in a lesion, allowing classification as soft, intermediate, or hard. The data obtained with the CAD system were compared with the visual analysis. We calculated the sensitivity, specificity, and area under the curve (AUC) for the classification using the CAD system from the manual delineation of the contour by each radiologist. Results: The performance of the CAD system for the most experienced radiologist achieved sensitivity of 70.97%, specificity of 88.46%, and AUC of 0.853. The system presented better performance compared with his visual diagnosis, whose sensitivity, specificity, and AUC were 61.29%, 88.46%, and 0.829, respectively. The system obtained sensitivity, specificity, and AUC of 67.70%, 84.60%, and 0.783, respectively, for images segmented by Radiologist 2, and 51.60%, 92.30%, and 0.771, respectively, for those segmented by the Resident. The intra-class correlation coefficient was 0.748. The inter-observer agreement of the CAD system with the different contours was good in all comparisons. Conclusions: The proposed CAD system can improve the radiologist performance for classifying breast masses, with excellent inter-observer agreement. It could be a promising tool for clinical use

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Risk Stratification of Thyroid Nodule: From Ultrasound Features to TIRADS

    Get PDF
    Since the 1990s, ultrasound (US) has played a major role in the assessment of thyroid nodules and their risk of malignancy. Over the last decade, the most eminent international societies have published US-based systems for the risk stratification of thyroid lesions, namely, Thyroid Imaging Reporting And Data Systems (TIRADSs). The introduction of TIRADSs into clinical practice has significantly increased the diagnostic power of US to a level approaching that of fine-needle aspiration cytology (FNAC). At present, we are probably approaching a new era in which US could be the primary tool to diagnose thyroid cancer. However, before using US in this new dominant role, we need further proof. This Special Issue, which includes reviews and original articles, aims to pave the way for the future in the field of thyroid US. Highly experienced thyroidologists focused on US are asked to contribute to achieve this goal

    Enter the matrix:On how to improve thyroid nodule management using 3D ultrasound

    Get PDF
    Roughly two-thirds of the adult population has a thyroid nodule, of which 90% are benign. Of the adults that have a nodule, approximately 5% will experience symptoms that include a feeling of a marble stuck in the throat, difficulty swallowing and breathing, and cosmetic complaints. Thyroid nodule management primarily makes use of ultrasound as the imaging modality for diagnosis, image guidance during therapy (radiofrequency ablation i.e. RFA), and follow-up. Although ultrasound is relatively easy to apply, it is hard to standardize for repeated measurements and across various users. Further, RFA can benefit from 3D imaging information and a planning and navigation system to improve clinical outcome. These challenges may be overcome by using 3D ultrasound. In this thesis, two phantoms were created on which these methods can be developed. Further, it offers insight into the use of 2D and 3D ultrasound for thyroid nodule management.To assess the impact of changes to an intervention, a baseline was determined of the effectiveness of RFA in Dutch hospitalsUsing a simple phantom, we have shown that utilizing a volume-based measurement technique, that the matrix transducer offers, results in improved measurement accuracy. The more complex, anthropomorphic, phantom serves as a platform on which thermal treatments, such as RFA, can be improved. Using this phantom, we have shown that the impact of 2D and 3D ultrasound on RFA efficacy does not differ from one another; however, the matrix transducer might be more user-friendly for needle placement due to the dual-plane imaging. An additional use case for these phantoms is their capacity to compare dominant and non-dominant hand ablations, as well as serve as a training platform. Additional research is required that employs more operators to find stronger evidence supporting a difference between the ablating hands and the difference in effect of 2D and 3D ultrasound guidance.To make full use of 3D ultrasound, stitching algorithms should be integrated into the ultrasound systems to acquire larger volumes. These can then be processed by deep-learning algorithms for use in computer-aided diagnosis and intervention systems. To further improve the applicability of 3D ultrasound in the clinic, integrating analysis methods such as 3D elastography and 3D Doppler is suggested

    Treatment of Later Humoral Rejection with Anti-CD20 Monoclonal Antibody Rituximab: A Single Centre Experience

    Get PDF
    Humoral or vascular rejection is a B cell-mediated production of immunoglobulin (Ig) G antibody against a transplanted organ that results in immune complex deposition on the vascular endothelium, activation of the complement cascade, production of endothelial dysfunction and regional ischaemic injury
    corecore