142 research outputs found

    Deep White-Balance Editing

    Full text link
    We introduce a deep learning approach to realistically edit an sRGB image's white balance. Cameras capture sensor images that are rendered by their integrated signal processor (ISP) to a standard RGB (sRGB) color space encoding. The ISP rendering begins with a white-balance procedure that is used to remove the color cast of the scene's illumination. The ISP then applies a series of nonlinear color manipulations to enhance the visual quality of the final sRGB image. Recent work by [3] showed that sRGB images that were rendered with the incorrect white balance cannot be easily corrected due to the ISP's nonlinear rendering. The work in [3] proposed a k-nearest neighbor (KNN) solution based on tens of thousands of image pairs. We propose to solve this problem with a deep neural network (DNN) architecture trained in an end-to-end manner to learn the correct white balance. Our DNN maps an input image to two additional white-balance settings corresponding to indoor and outdoor illuminations. Our solution not only is more accurate than the KNN approach in terms of correcting a wrong white-balance setting but also provides the user the freedom to edit the white balance in the sRGB image to other illumination settings.Comment: Accepted as Oral at CVPR 202

    Camera Color Accuracy Evaluated via Metamer Mismatch Moments

    Get PDF
    A novel method for evaluating the colorimetric accuracy of digital color cameras is proposed based on a new measure of metamer mismatch body (MMB) induced by the change from the camera as an observer to the human standard observer. Previous methods of evaluating the colorimetric accuracy of a camera at the Luther condition [1], the mean CIE&nbsp

    Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage.This research was developed during a visiting research stay of Dr. José M. Medina in the Departamento de Óptica, Universidad de Granada, Spain. We thank to José Medina and Rosalía Ruiz who provided the peacock samples, to David Porcel and Juan de Dios Bueno from the Servicio de Microscopía, (Centro de Instrumentación Científica, Universidad de Granada) for technical assessment, and to the Color Imaging Group (Universidad de Granada) for their hardware partial support. JMM and JAD acknowledge the Departmento de Óptica, Universidad de Granada, Spain. PV acknowledges USAF funding (FA9550-10-1-0020)

    Design for Implementation of Image Processing Algorithms

    Get PDF
    Color image processing algorithms are first developed using a high-level mathematical modeling language. Current integrated development environments offer libraries of intrinsic functions, which on one hand enable faster development, but on the other hand hide the use of fundamental operations. The latter have to be detailed for an efficient hardware and/or software physical implementation. Based on the experience accumulated in the process of implementing a segmentation algorithm, this thesis outlines a design for implementation methodology comprised of a development flow and associated guidelines. The methodology enables algorithm developers to iteratively optimize their algorithms while maintaining the level of image integrity required by their application. Furthermore, it does not require algorithm developers to change their current development process. Rather, the design for implementation methodology is best suited for optimizing a functionally correct algorithm, thus appending to an algorithm developer\u27s design process of choice. The application of this methodology to four segmentation algorithm steps produced measured results with 2-D correlation coefficients (CORR2) better than 0.99, peak-signal-to-noise-ratio (PSNR) better than 70 dB, and structural-similarity-index (SSIM) better than 0.98, for a majority of test cases

    Particle Swarm Optimisation in Practice: Multiple Applications in a Digital Microscope System

    Get PDF
    We demonstrate that particle swarm optimisation (PSO) can be used to solve a variety of problems arising during operation of a digital inspection microscope. This is a use case for the feasibility of heuristics in a real-world product. We show solutions to four measurement problems, all based on PSO. This allows for a compact software implementation solving different problems. We have found that PSO can solve a variety of problems with small software footprints and good results in a real-world embedded system. Notably, in the microscope application, this eliminates the need to return the device to the factory for calibration
    corecore