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Abstract: We demonstrate that particle swarm optimisation (PSO) can be used to solve a variety
of problems arising during operation of a digital inspection microscope. This is a use case for the
feasibility of heuristics in a real-world product. We show solutions to four measurement problems,
all based on PSO. This allows for a compact software implementation solving different problems. We
have found that PSO can solve a variety of problems with small software footprints and good results
in a real-world embedded system. Notably, in the microscope application, this eliminates the need to
return the device to the factory for calibration.

Keywords: digital microscope; inspection system; metrology; particle swarm optimisation; heuristics;
image stitching

1. Introduction

Computational intelligence has been a major field of research. This includes stochastic
optimisation methods, such as those from the fields of evolutionary computing and swarm
intelligence [1,2]. The latter optimisation paradigms feature several heuristics that can
be used over black-box problems, or any other challenging optimisation problem for
which using an exact method would not be viable or time-efficient. For this reason, such
heuristics approaches do not only represent an interesting fundamental research topic,
but have also become very popular among practitioners benefiting from their wide-scope
applicability in several domains of sciences, engineering and industry [3–6]; however, in
the vast majority of cases, the literature reporting on such application studies is written
from an academic point of view, i.e., highlighting novelty and technical aspects, often
overlooking the impact created by the proposed technology in industry in more practical
terms. In this study, we instead focus on showing that the introduction of well-known
heuristic optimisation in technological devices can improve some characteristics of the
product, making it not only more efficient, but also more usable, thus improving upon
customer satisfaction. For this reason, we selected an established and simple heuristic for
optimisation, namely the particle swarm optimisation algorithm (see Section 2.2 for details),
and used it to address feedback from customers on a digital microscope/inspection system
for medical applications produced by Ash Ltd. Through customer feedback, four areas
where improvements would help in increasing the quality and simultaneously reduce
costs were identified. We aim to show that, if areas of improvements are well formulated
in the fashion of the optimisation problem, even embedding only one simple general-
purpose algorithm within the device (we present the details in Section 2.1) can make a
major difference. Moreover, we present the production-ready solutions for these four
problems, consisting of

Appl. Sci. 2022, 12, 7827. https://doi.org/10.3390/app12157827 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157827
https://doi.org/10.3390/app12157827
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5990-4157
https://orcid.org/0000-0002-1795-6995
https://orcid.org/0000-0001-9199-7368
https://doi.org/10.3390/app12157827
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157827?type=check_update&version=1


Appl. Sci. 2022, 12, 7827 2 of 27

• An object height measurement task (Section 3);
• An image stitching for high-resolution images task (Section 4);
• An accurate colour reproduction task (Section 5);
• An image distortion correction task (Section 6).

Note that using a single general-purpose optimiser for the four problems is preferable
in this specific context. Advantages from this approach are multiple, including that only a
single software implementation of an optimisation algorithm needs to be developed, that
the software/firmware is easier to maintain, that porting the produced software to different
platform is faster, but also that training engineers becomes simpler, faster and less costly.
It must be also pointed out that the four addressed tasks are measurement problems. As
the digital microscope is generally used in a wide variety of applications by the customers
who decide to purchase it, these measurements processes might be very different; therefore,
optimising algorithms to a particular dataset to gain marginal improvements is not the aim.
In fact, this may cause deterioration of results on other datasets [7]. This further supports
our approach, which is also consistent with the tenets of Industry 4.0, in providing bespoke
solutions to practical problems, in an efficient and inexpensive manner, both resource wise
and computationally.

2. Materials and Methods
2.1. Omni 3 Digital Microscope Inspection and Measurement System

The Omni 3 is a system for inspection and measurement purposes. It is based on
digital imaging technologies and includes a zoom lens with a magnification range between
2.5 and 672. The system has integrated software applications which eliminate the need for
an external computer. Those applications include:

• Fast autofocus function;
• Image stitching;
• Image stacking;
• 2D and 3D measurement and graticules;
• Image comparator;
• Object counting;
• Colour analysis;
• 2D measurement functions including point to point, polyline, circle and rectangles.

The system achieves a 2D measurement accuracy of +/−1% and a Z-height accuracy
of 100 µm. A full description of the system can be found at [8].

All software was developed using OpenCV [9] and the Qt C++ framework [10]. Other
software and libraries used are outlined in the sections where they are used.

For an overview of the field of metrology and a literature review, we refer the reader
to [11].

2.2. Particle Swarm Optimisation

Particle swarm optimisation [12,13] is a swarm intelligence metaheuristic for optimis-
ing continuous nonlinear problems defined on an n-dimensional search space D ⊂ Rn

(characterised by n lower and upper bounds, i.e., li and ui with i = 1, . . . , n, in this work).
Its popular working mechanism is quite simple, and it is iterated until a stop condition is
met—with the most used stop criteria being a fixed number of objective functional calls,
usually expressed in terms of maximum number of iterations Imax, failing at improving
upon the objective value of the best ever found solution xGB for a number Fmax of iterations,
or the achievement of a satisfactory level of accuracy for the solution (measured with a
threshold τ).
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Each iteration consists of the perturbation, and interaction, of a number of particles
NP associated with their current position in the search space xj ∈ D (i.e., the candidate
solution), their velocity v ∈ Rn, and the‘personal best’ ever explored position xPB

j (with
j = 1, . . . , NP). Note that a solution is said to be better, or to outperform another one, if its
objective function value is lower while facing a minimisation problem—the opposite for a
maximisation one. The same implementation of a PSO can be used for both minimisation
and maximisation processes by simply multiplying the objective function f (∗) by −1 as
needed. A complete iteration requires calling f (∗) for NP times as each solution x (which is
initially randomly generated in D) must be perturbed to attempt to explore a new position
whose functional value outperforms the one of the global best solution xGB to update it.
This is achieved by applying the following operators to the the velocity and position vectors
of the NP particles:

v(new)
j = wvj + r1

(
xPB

j − xj

)
+ r2

(
xGB

j − xj

)
(1)

x(new)
j = xj + v(new)

j (2)

where w is the ‘inertia’ weight (controlling the exploratory step size [14]) while r1 and r2 are
random weights uniformly drawn within [0, c1] and [0, c2], respectively. The acceleration
constants c1 and c2 are user-defined to have more pressure towards local best solutions, the
global best solution or to achieve a balanced search. More details can be obtained from [15].
Generally employed settings from the literature see c1 = c2 = 2 as good choices for
several applications [12], while w = 0.7 is a quite established value, even though adaptive
formulas for dynamically adjusting w, see, e.g., w ∈ [0.4, 0.9] [16,17], as well as for adjusting
the acceleration constants, see, e.g., [18–20], also exist. Note that the velocity vectors,
which act more as a displacement vector for the current position, are usually initialised
at random within D (small values are to be preferred [21]) can then assume any arbitrary
value. This may lead to the so-called ‘velocity explosion’ undesired effect, which should
be mitigated, e.g., as shown in [22], and by avoiding a too small swarm size [23]. Our
implementation controls the velocity value via the ‘clamping’ method from [22]. Finally,
we employ the ‘absorbing walls’ method in [24] to deal with infeasible solutions that might
be generated by the PSO logic during the search for optima. This consists of saturating the
infeasible positions of a generic jth particle (i.e., those components of xj falling outside the
boundaries) to the closest ‘violated’ boundary re-initialising the corresponding velocity
vector vj with zeros.

This simple working logic, together with good performances over benchmark and
real-world problems, made PSO popular and widely used by practitioners, who use it over
a variety of application fields such as engineering [25,26] and health-care, including envi-
ronmental, industrial and commercial applications and many other general optimisation
tasks [27–29]. PSO variants for discrete domains have also been proposed to tackle, e.g.,
planning and scheduling problems [30].

3. Accurate Objects’ Height from Focus Measurement

The conventional approach to determine the height of a generic object under inspection
with the digital microscope is based on the fixed single thin lens optical system model. This
features a linear relation between the distances do and di (from the object and the image
to the lens, respectively), as formulated in Equation (3) where f is the focal length of the
lens [31].

1
f
=

1
do

+
1
di

(3)

This simple equation makes it easy to determine the distance from the camera to the
object by simply moving the camera towards and away from the object and finding the best
in focus image [32]. Note that in cameras in practical use, things become more complex. This
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is because they require multiple lenses and also due to the fact that properties of the lenses
are generally confidential, and that stepper motors used to move the internal focus lens do
not have a linear relationship with the focus distance from the camera. Hence, the 0–25 mm
admissible range of our system was initially discretised in 26 checkpoints, by moving the
camera with a 1 mm step, to generate a lookup table matching corresponding heights of
the object and peak focus positions of the camera. The calibration jig for performing this
process is shown in Figure 1. This is used to move the camera in the vertical direction along
a linear guide rail whose lead screw is turned by the stepper motor. Each movement of the
camera, whose height is recorded through 10 µm resolution linear encoder, is equivalent
to changing the height of the test sample. All communication from the PC software to the
stepper motor occurs through RS232 ports.

Figure 1. Camera calibration jig.

Using the lookup table to estimate the height of an object proved to be problematic for
two main reasons. First, measuring focus is a noisy process, which often returns poor peak
focus measurements. In turn, the latter leads to unreliable height values. Indeed, while
moving the camera, a built-in function (set up in auto focus mode) is called to find the peak
focus energy with the Laplacian operator method [33] to: determine the best focus position;
read the focus motor position value; generate a table of ‘focus value vs. object height’ data;
however, incorrectly returned position values negatively impact on the calibration process,
thus introducing errors. We empirically confirmed this by noticing that the peak focus
energy we measured clearly differed from the peak of the data when a polynomial is fitted
to the data. Additionally, significant outliers in calibration data are likely to be present due
to vibrations and changes in lighting conditions on the factory floor. Second, it requires re-
calibrating the system accurately due to non-consistent optical/mechanical characteristics
across cameras. This is achieved by returning the microscope back to the factory, where
the previously stored 26 checkpoints are used to perform the camera re-calibration process.
As the 26 points cannot always represent the ideal baseline, this approach is still prone to
poor re-calibration outcomes. Obviously, having to ship the system for re-calibration adds
costs and delays, and it is undesirable considering that these systems are expected to be in
constant use. Hence, a built-in automatic calibration routine capable of mitigating the noisy
component of the focus measurement would significantly and simultaneously improve
performance, customer experience and value for money.
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To overcome these problems, we present a self-calibrating approach where uncertainty
is mitigated. Instead of using the 26 noisy measured peaks, we augmented the data-set to
make it more robust and accurate, and we found the optimal coefficients for a polynomial
fitting them, thus being able to generate the required lookup table with a smoother function
and with any preferred number of points (this approach is known to reduce noise [34]).

In the following subsection, we first show the experimentation performed to increase
the sample size from 26 to 260 samples (Section 3.1), to then show how we determined
the order of the polynomial function to best fit that augmented data set (Section 3.1.2).
Once found, such coefficients are to be stored onto each microscope before shipping it to
customers and the firmware of the microscopes is also upgraded to exploit the polynomial
function for performing automatic re-calibration and determine the height of the object
accurately without the need of returning it to the factory.

3.1. Optimised Polynomial Fitting

We make use of the PSO algorithm, as introduced in Section 2.2, to optimise the
polynomial interpolator so that the mean squared error (MSE) between observed values xk
and predicted values x̂k, as defined in Equation (4), is minimised.

MSE =
SZ

∑
k=1

(xi − x̂k)
2 (4)

3.1.1. Experimental Set-Up

We performed a preliminary experiment to determine the most appropriate number
of points, i.e., the sample size SZ, to use for evaluating the MSE objective function. For this,
we used synthetic data obtained by generating a ground truth of height samples from a 2nd
order polynomial setting of coefficients a0 = 3.4, a1 = 0.022 and a2 = 0.00003 (±2 steps of
uniform noise in the range of 0 to 2 is added to the ground truth data).

To obtain the best polynomial function match, we ran the PSO algorithm (param-
eters are empirically tuned on the smallest SZ returning the minimum error ) set with
NP = 50; c1 = 1.50; c2 = 0.30; w = 0.92; velocity components clamping within [−0.05, 0.05];
Imax = 5000; but with increasing height samples SZ, from 25 to 1000. The setup for chang-
ing SZ is shown in Figure 1. For each height sample size, 10 independent runs of the PSO
were performed. This process returns the polynomials functions required to calibrate the
systems. As this is a measurement system, its accuracy is determined by its maximum error.
Hence, for each run, we also record the corresponding max step error and compute their
average. As evident from Table 1, it could be noted that this averaged max error (which is
expected to be smaller when the sample size is higher) stopped decreasing at SZ = 250.
Hence, we use and suggest this sample size (plus 10 extra points to allow for a margin of
error) for fitting the polynomials with the PSO algorithm (i.e., we work with SZ = 260).

Table 1. Finding SZ for best polynomial match. Selected values are shown in boldface.

SZ 25 50 75 100 150 200 250 500 1000

Max Step Error Average 1.33 0.48 0.46 0.43 0.39 0.33 0.22 0.22 0.22

3.1.2. Validation on Real Data

Our method was validated experimentally. We employed a 3rd, a 4th and a 5th
order polynomial function to understand if higher order interpolators led to better results.
Note that these require from 4 up to 6 coefficients ai ∈ [li, ui], with i = 0, 1, 2, 3, 4, 5.
The corresponding search spaces for the problems are indicated via the following lower
bound vector l = [−400, 0, −3, −0.003, −0.00003, −0.000001] and upper bound vector
u = [0, 50, 3, 0.003, 300,000, 1,000,000]. Before applying the PSO approach, a camera was
randomly selected and calibrated five times using accurate data measured in the factory to
produce the ‘ground truth’ described in Section 3.1.1. Results showing the height of the
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camera (in terms of steps) are reported in Table 2. These show errors varying from 3.38 steps
to 7.65 steps. Subsequently, we fit the three polynomial functions with the PSO algorithm
and used it to add calibration points as previously explained. The second approach led
to better results, in particle when using the 4th order polynomial function, which led to a
reduction in the error to the range of 0.24–0.53 steps.

Table 2. Validation results on five calibration processes—reported in steps.

ground truth 3.38 7.07 7.65 5.97 5.98

3rd order polynomial 0.34 0.45 0.43 0.51 0.7

4th order polynomial 0.24 0.31 0.39 0.32 0.53

5th order polynomial 0.39 0.31 0.39 0.29 0.95

It must be remarked that the proposed approach, with the suggested settings for the
PSO and the use of a 4th order polynomial for the regression problem at hand, has shown to
be very robust also in presence of outliers. Indeed, we replicated the experimental phase by
manually adding five outliers in the calibration data and were able to achieve the 0.24 steps
error after the optimisation process.

As we make use of a heuristic method for fitting the polynomial function, we also
compared the performances of the employed PSO to those obtained of another state-of-
the-art stochastic optimisation algorithm, namely the CMAES [35]. The latter has a higher
computational complexity and it has been applied to five data sets acquired from a single
camera run through the calibration process and compared to the PSO when fitting the 4th
order polynomial function to the data set; however, as shown in Table 3, only very marginal
improvements were registered on the objective functions. Such small variations do not lead
to better calibration processes, in favour of using PSO over CMAES due to its faster and
simpler algorithmic structure.

Table 3. Logged MSE values for PSO and CMAES.

PSO 271.3 401.28 355.3 374.7 319.2

CMAES 270.8 398.7 354.3 373.4 318.7

4. Image Stitching

Image stitching is a method of blending two or more overlapped images into a higher
resolution image. The requirement for image stitching can arise when an object is larger
than the field of view of the microscope or when high-resolution images of an object are
needed for quality assurance. Figure 2 shows an example of two images of the same object
taken with overlapping regions. In order to blend these images together the exact region
of overlap needs to be found. In microscopy applications where the sample is moved
manually, translation and rotation are required. When using a manual XY table only
translation is required.

The established methods for solving this problem largely fall into two categories,
feature point matching and template matching:

4.1. Feature Point Matching

Scale invariant feature transform (SIFT) [36] and speeded-up robust features (SURF)
descriptor [37] are commonly used to detect common features in images and RANSAC [38]
is used to match these features and calculate the homography. The images are then blended
together to form a higher resolution image.



Appl. Sci. 2022, 12, 7827 7 of 27

Figure 2. Example for the image stitching problem, where the two yellow areas represent the overlap
to be found.

4.2. Template Matching

There are many objects where registration by the detection of feature points is unsuit-
able. Figure 3 shows an example of such objects. If an interest point algorithm was used to
find a match for the areas marked by the yellow rectangle it would not be robust due to the
lack of sufficient features in these areas.

Figure 3. Example object not suitable for interest point matching.

Although interest points may not be suitable for these objects, a method called template
matching can be used. The most basic form of template matching for translation is sliding
the smaller template image over the larger image, and subtracting the pixel intensity of the
template image from the larger image at each pixel position and obtaining the sum of the
absolute or squared error of the pixel intensity differences. Where the difference is lowest,
the best match is found. If multiple matches are required, then a threshold can be set and
any match below this threshold is deemed a match.

A printed circuit assembly (PCA) is typically rich in colours with the printed circuit
board (PCB) background, switches, connectors, resistors, capacitors and integrated circuits.
Using a hue, saturation and value exploits the variety of colour.

An experiment was carried out to determine the difference between template matching
using the components of the HSV colour space. A template was selected, slid over the
master image and the loss function plotted as colour maps. The loss functions were the ab-
solute difference in hues, saturations, values and a combination of all three. As per Figure 4,
the hue matching results in a wider funnel at the best match position (global minimum)
but have more local minimums. The saturation and value (Lightness or grayscale) result in
a much narrower global minimum funnel but less local minimums. A combination of all
three HSV components results in a narrow global minimum and the least local minimums.
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Figure 4. Loss in HSV for image template matching (right) over an example image (top) to a section
of the image (yellow box). Blue indicates no loss and dark red indicates the maximum loss.

Given a master image size of width 640 and height of 360 and a template of width
105 pixels and height 180 pixels, the number of absolute difference operations is 96,300
and takes 3.54 s on an Intel i5 quad core processor running at 1.6 GHz with 8 GByte RAM.
This could be sped up by using different scales e.g., scaling the template and master image
down and finding the global minimum, repeating this process at different scales up to 1:1
but only searching in the area of the previous global minimum.

4.3. Accelerating Image Template Matching Using PSO

In order to speed up the search compared to the exhaustive search described previously,
a PSO was used with NP = 50; c1 = 0.9; c2 linearly adjusted from 0.1 to a maximum of 5;
w = 0.9; velocity components clamping within [−0.3, 0.3]; Imax = 5000. These values were
empirically found.

To achieve our goal with the PSO method, a loss function to be minimised is defined
as the absolute difference of the error when subtracting the template image from the image
predicted by each particle. The loss can be the hue, saturation, value (Lightness) or all three.
Note that the lightness value was used in this investigation. Particles encode an (x, y) point
whose boundaries are the image (template) size.

A method was implemented to allow for more exploration at the start of the search
and exploitation or convergence at the end of the test by varying the social coefficient c2.
When c2 is selected, the search starts out with a setting of 0.1 until the search has searched
half of the search cycles. After that c2 is linearly increased from 0.1 to 5.0 for the second half
of the search cycle. Results for the variable and fixed c2 method are reported in Table 4.
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We used the PSO-optimised image stitching approach for the test cases in the following
paragraphs.

4.3.1. Experiment 1

The object in Figure 3 was used to evaluate the PSO search algorithm for the application
of image stitching. The loss over the search space is shown in Figure 5. Lightness and HSV
have distinct minimums and a funnel-like structure around the minimum making them
ideal for a search algorithm. As lightness required one third of the computation, it was
chosen as the matching method.

(a) (b)

(c) (d)
Figure 5. Loss in HSV over the image used for experiment 1. Blue indicates no loss and dark red the
maximum loss: (a) hue; (b) saturation; (c) lightness; (d) HSV.

The PSO was run 10 times.The average speed of the PSO search, 365 ms, is significantly
faster than the previous method, which requires 2.85 s to achieve very similar performances.
This means that the PSO approach does not deteriorate the performance with a 87% decrease
in the search time—see Table 4.

Table 4. PSO results for experiment 1 obtained with both fixed value variable values for the c2

parameter. The ground truth is (258, 112).

Run Fixed c2 Variable c2 Time (ms)

1 (257, 112) (258, 112) 350
2 (258, 112) (258, 112) 374
3 (258, 112) (258, 112) 356
4 (258, 112) (258, 112) 355
5 (258, 112) (258, 112) 364
6 (258, 112) (258, 112) 365
7 (258, 112) (258, 112) 365
8 (258, 113) (258, 112) 365
9 (258, 112) (258, 112) 365
10 (258, 112) (258, 112) 365

4.3.2. Experiment 2

The PCB selected in Figure 6 was used to evaluate the PSO search algorithm for the
application of image stitching. The search space with the loss is shown in Figure 7. All
search spaces have a very small point indicating the matching position.
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Figure 6. The yellow area is matched to the overall image in experiment 2.

(a) (b)

(c) (d)
Figure 7. Loss in HSV over the image used for experiment 2. Blue indicates no loss and dark red the
maximum loss: (a) hue; (b) saturation; (c) lightness; (d) HSV.

4.3.3. Results

Full search template matching using hue only search time was 2.25 s. In order to
obtain accurate matching using PSO search a large number of particles (500) was needed
to ensure the area with the lowest loss was explored. Similarly to Experiment 1, minor
errors occurred were C2 was fixed but none where C2 was varied during the search. The
number of cycles was set to 15 and the search time 1.25 s resulting in a 45% speed increase
in run time.

4.4. 2D Point Cloud Matching
4.4.1. Method

There are many objects in the medical device industry where high-resolution images
are required for quality assurance. Some of these objects have little or no features that can be
used as interest point. At the same time, they have areas that are identical, which eliminates
the template matching method. So both the described methods are not applicable. For such
objects interest points can be added by use of a random point laser.

For this, a 2D point cloud matching application (Figure 8) was developed using
synthetic point data.



Appl. Sci. 2022, 12, 7827 11 of 27

Figure 8. The 2D point cloud matching application.

In total, 100 points were generated with the X and Y coordinates uniformly randomly
generated between li = 0 and ui = 300 (Point Cloud 1). A second set of points were
generated by mutating the first set with programmable random dropout where the point is
replaced with a new random point and programmable point mutation where a random
noise is added to the point position (Point Cloud 2). In addition to the mutations each
point can be translated ±20 positions in X and Y and rotated +/−20 degrees. An additional
50 points are added to point cloud 2 outside the 0 to 300 area.

A PSO algorithm with the settings NP = 50, c1 = 2, c2 = 0.3; w = 0.9, velocity
components clamping within 30% of the search space with ui − li = 300 and Imax = 1000
was developed. Each particle has a predicted X, Y offset and rotation angle. The loss
function computes the predicted dataset by offsetting each point in point cloud 1 by its X, Y
and rotating it by the rotation angle. For each point in the predicted dataset the distance to
its nearest point in point cloud 2 is calculated. The sum of these distances squared is used
as the loss function to be minimised.

4.4.2. Results

The PSO matching time for a 2D point cloud matching is approximately 5 s and the
matching function was 100% accurate on every run with maximum dropout (25%) and
noise (10%).

5. Colour Reproduction Accuracy

The colour reproduction accuracy is very important in digital microscopes as the colour
sensitivity of the sensor seldom reproduces the colour space required by monitors [39]. In
1996, HP and Microsoft developed a standard colour space (sRGB) for use in monitors,
printers and the internet [40]. In order to render the image on a display as accurately
as possible these RGB pixel values need to be mapped to the device-independent colour
space sRGB.

Figures 9 and 10 and demonstrates the essence of the challenge. A reference colour
chart (Figure 9) is placed under the microscope and an image (Figure 10) taken with no
colour correction applied. The measured colours are not an accurate representation of the
reference colour chart and look washed out/lack vibrancy.

In the digital microscope, colour correction is part of the simplified image processing
pipeline shown in Figure 11.
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Figure 9. Macbeth chart.

Figure 10. Measured colours.

Figure 11. Microscope image processing pipeline.
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The image processing pipeline works as follows:

• Light from the object under inspection is focused on the image sensor using a single
or combination of lenses. Infrared light is blocked using an infrared filter.

• The image sensor converts the incoming light to a Bayer image.
• The Bayer image is converted into a red, green and blue (RGB) image.
• The RGB image is white balanced.
• The RGB colour pixel measurements that are dependent on the sensor, optics and

lighting characteristics do not accurately represent the actual object RGB colours and
are corrected by a colour correction matrix.

• Gamma correction is applied to match the gamma of the display.

There are many methods of mapping from device dependent RGB to the sRGB space,
such as look up tables, linear and polynomial regression and neural networks [41]; however,
a simple 3 × 3 matrix linearly transforming the device dependent RGB to the sRGB space
“is not easily challenged” [41]. In addition, the application of this mapping is conducted
in real time and performed in an FPGA, ruling out alternative methods due to speed and
resource usage.

In order to find a 3 × 3 colour correction matrix, a number of known sRGB colours are
measured by the sensor and a matrix is derived that maps these measured values to the
known sRGB colours. A reference colour checker chart [42] was imaged by the camera. A
region of interest (Figure 12) within each colour was selected and the mean RGB values of
that region of interest calculated.

Figure 12. X-rite colour checker chart measured by the camera showing the region of interest areas.

A table of colour regions vs. reference sRGB values [43] provides the ground truth for
each colour in the chart.

The reference sRGB values are non-linear, with an exponent Gamma of approximately
2.2 applied to their normalised values [40]. The measured RGB values also have a Gamma
of 2.2 applied to their normalised values within the FPGA. To convert these into linear
space RGBL where a linear 3 × 3 matrix can be used to transform the device-dependent
RGB values to device-independent sRGB values, each RGB value is divided by 255 and a
Gamma power of 2.2 is applied.

RGBL = (RGB/255)2.2 (5)

Table 5 shows the measured, reference sRGB values and the 3 × 3 colour correction
matrix.
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Table 5. Measured and reference sRGB values.

Measured Values CCM Reference Values

R G B R G B

0.141 0.098 0.078 ? ? ? 0.173 0.082 0.055
0.482 0.349 0.294 × ? ? ? = 0.548 0.311 0.227
0.188 0.231 0.326 ? ? ? 0.122 0.198 0.344
0.122 0.137 0.090 0.094 0.151 0.053
0.247 0.255 0.384 0.239 0.220 0.448
0.322 0.494 0.478 0.136 0.517 0.410
0.502 0.243 0.098 0.680 0.212 0.021
0.118 0.153 0.329 0.078 0.104 0.389
0.376 0.157 0.141 0.542 0.101 0.125
0.090 0.071 0.122 0.111 0.041 0.151
0.400 0.455 0.208 0.344 0.511 0.048
0.580 0.369 0.137 0.752 0.374 0.023
0.063 0.086 0.227 0.036 0.043 0.311
0.161 0.259 0.153 0.058 0.302 0.064
0.255 0.086 0.063 0.437 0.033 0.041
0.565 0.467 0.180 0.805 0.580 0.010
0.361 0.184 0.271 0.505 0.092 0.307
0.149 0.275 0.396 0.000 0.239 0.364
0.984 0.973 0.957 0.899 0.899 0.891
0.643 0.647 0.651 0.586 0.586 0.586
0.388 0.392 0.396 0.359 0.359 0.359
0.220 0.220 0.224 0.198 0.198 0.194
0.094 0.098 0.102 0.089 0.089 0.089
0.039 0.039 0.039 0.030 0.030 0.030

A 3× 3 matrix needs to be found that transforms the measured colours to the reference
colours as accurately as possible.

The most common method of correcting colour is the linear method using a 3 × 3
matrix to transform the measured colour to the reference colour [44]. Let R and M denote
3 × N matrices of reference colours and measured colours. N is the number of RGB samples.
A 3 × 3 matrix C needs to be found that minimises:

min
C

= ||MC− R|| (6)

An inverse matrix can be used to solve MC = R. Add the inverse of M to each side of
the equation

M−1MC = M−1R (7)

As any matrix multiplied by its inverse matrix is the identity matrix I.

IC = M−1R (8)

The matrix C is not changed when multiplied by an identity matrix.

C = M−1R (9)

However, as the matrix M and R are not square a Moore–Penrose pseudo-inverse
matrix method [44,45] is commonly used to find the matrix C. Using the openCV [9]
function “inv(DECOMP_SVD)” to find such a matrix (called a colour correction matrix
(CCM) hereafter) resulted in the values shown in Table 6.
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Table 6. CCM calculated using pseudo-inverse.

1.855 −0.750 −0.174
−0.252 1.567 −0.382
0.079 −0.649 1.471

A standard PSO search method was used with the exception of ‘Outlier Rejection’.
Outlier rejection was implemented for each particle by sorting the losses for each colour
and eliminating the top losses. The number of outliers can be selected from 0 to 5. The PSO
settings used are shown in Table 7.

Table 7. PSO settings for the distortion correction task.

Parameter Value

NP 50
Velocity Limits −0.3 to 0.3
Particles Initial Values Random number ( −2.5, 2.5 )
c1 0.90
c2 0.50
W 0.9
Outliers 0/1
Stopping Criteria Stop if the loss is not changing for 100 cycles

Loss function: The normalised and gamma corrected measured sRGB values M were
multiplied by particles colour correction matrix C. The resulting corrected colours RGB val-
ues were subtracted from the normalised and gamma corrected reference values R. The sum
of the square of the absolute differences were used as the loss calculation (Equation (10)).

Loss = ||MC− R||2 (10)

The PSO algorithm found a colour correction matrix (Table 8) virtually identical to the
pseudo-inverse matrix method when no outliers were allowed.

Table 8. CCM found using PSO.

1.856 −0.751 −0.174
−0.252 1.567 −0.382
0.078 −0.639 1.470

The total colour reproduction error was calculated which is made up of the sum of
the absolute errors of each of the sRGB corrected values compared to the reference sRGB
values. Pseudo-inverse matrix produced a consistent error of 310. The PSO algorithm
produced errors from 308 to 310. Allowing a single outlier in the PSO algorithm reduced
the error to 274, an 11.3% decrease in the colour reproduction error. Figure 13 shows colour
examples (using the pseudo-inverse matrix) in groups of three. The top of each group is
the uncorrected colour, the middle is the required colour and the bottom is the corrected
colour. Three examples are highlighted by a yellow border where the colour matching have
noticeably improved with the PSO algorithm.

Figure 13. Examples of colour comparisons using pseudo-inverse matrix.
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The PSO algorithm found a colour correction that gave an equal or better result than
the pseudo-inverse matrix 100 times out of 100 times it was run. The number of cycles to
perform a search varied between 320 and 680.

6. Image Distortion Correction

In the digital microscope used a simplified image distortion correction pipeline is
shown in Figure 14.

Figure 14. Microscope image distortion processing pipeline.

Digital microscopes are commonly used to measure objects being inspected. Typically,
the system is calibrated by using a reference ruler, which is placed under the microscope
and a reference measurement is made. From that reference measurement, a pixel to mm
ratio is determined and this is used to make further measurements.

This method relies on accurate spatial reproduction of the image; however, optics can
introduce lens distortion errors due to non-linear magnification of lenses and the alignment
of the sensor with the optics. In addition, the optics with the object being inspected can
introduce linear affine and non-linear perspective errors. Figure 15 shows an example of a
rectangular grid image that has perspective and lens distortions applied. As the two blue
lines are the exact same length, it is evident that significant measurement errors occur if a
fixed pixel to mm ratio is used to make measurements.

Figure 15. Image distortion errors.
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In theory, a pinhole camera produces a geometric perfect image of an object; however,
in real optical systems lens manufactures have to balance many aberrations resulting in
radial image distortion [46]. Radial distortions appear as barrel (Figure 16) or pincushion
(Figure 17) distortions.

Figure 16. Barrel distortion.

Figure 17. Pincushion distortion.

Radial distortion can be modelled using a polynomial equation. For each pixel (x,y)
in the distorted image, the correct position of where that pixel should be is given in
Equations (17) and (18). R is the radius and r is the normalised distance of a pixel from the
optical centre for a 1920 × 1080 image and k1 to kn are the polynomial coefficients.

The optical centre of the camera may not be the centre of the image due to sensor
and lens misalignment. In Figure 18 the red grid is an undistorted grid. The blue grid
has barrel distortion and decentring in the x-plane. This is because decentring P1 and
P2 are not equidistant from the image centre. If the image centre is used to calculate r in
Equations (11)–(14), significant errors would be introduced; therefore, the optical centre
position needs to be found.

dx = xpoint − xoptical−centre (11)

dy = ypoint − yoptical−centre (12)

R =
√

dx2 + dy2 (13)

r = R/1100.1 (14)

xscale = 1 + k1r2 + k2r4 + k3r6... (15)

yscale = 1 + k1r2 + k2r4 + k3r6... (16)

xcorrected = xoptical-centre + (x− xoptical-centre) · scale (17)

ycorrected = yoptical-centre + (y− yoptical-centre) · scale (18)
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Figure 18. Optical decentring.

6.1. Affine and Perspective Distortion

Affine (linear) and perspective (non-linear) distortions are shown in Figure 19, includ-
ing a 3 × 3 matrix that can be used to carry out that transformation. The new location (x′,
y′) of each pixel is attained by multiplying the matrix by the current location of each pixel.
Equation (19) depicts a pixel rotation operation. A 1 is added to the (x, y) and (x′, y′) pixel
locations to allow matrix multiplication.x

′

y
′

1

 =

cosθ sinθ 0
sinθ cosθ 0

0 0 1

 ∗
x

y
1

 (19)

Figure 19. Affine and perspective distortions.
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Homography Matrix

All of these matrix operations can be combined into a single 3 × 3 matrix known as a
homography matrix Equation (20). This single matrix with 8 degrees of freedom can fix all
the following distortions:

• Rotation.
• Shearing.
• Translation.
• Scaling.
• Perspective. x

′

y
′

1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 ∗
x

y
1

 (20)

6.2. Problem Definition

Figure 20 demonstrates the essence of the challenge. A reference grid chart is placed
under the microscope and an image taken with no image distortion correction applied.

A method of correcting Figure 20 (left) to produce a corrected image (Figure 20 (right))
is required.

Figure 20. Distortion correction.

6.3. The Method

A known reference grid is syntactically generated or imaged by the microscope and
the distorted image points are detected and their position saved.

A combination of radial lens distortion correction with optical centre compensation
and a homography matrix that map the detected points to the known point positions is
searched for. A flowchart of the search is depicted in Figure 21.

A standard PSO search method was used with the settings reported in Table 9.

Table 9. PSO settings for the distortion correction task. Ranges per component of this search space D
are reported in Table 10.

Parameter Value

Particles 50
Velocity Limits clamped at 20% of D
C1 2.00
C2 0.2
W 0.9
Stopping Criteria Stop after 25,000 cycles

Loss function: The square of the differences of the corrected detected points and the
reference points were used as the loss calculation Equation (21):

Loss =
n

∑
i=1

(
(xi, yi)predicted − (xi, yi)real

)2
(21)
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Figure 21. Distortion correction flowchart.

6.3.1. Particle Initial Values

The range of initialisation values for the homography matrix (hrow,col), polynomial
constants (k1 to k4) and the optical centre (Ox, Oy) are given in Table 10.

Table 10. Search space for the distortion correction task.

Component Lower Bound Upper Bound

h11 0.9 1.1
h12 −0.3 0.3
h13 −20 +20
h21 −0.3 0.3
h22 0.9 1.1
h23 −20 +20
h31 −0.000005 +0.000005
h32 −0.000005 +0.000005
h33 0.95 1.05
K1 −0.05 +0.05
K2 −0.0005 +0.0005
K3 −0.00005 +0.00005
K4 −0.000005 +0.000005
Ox −5 +5
Oy −5 +5

6.3.2. Velocity Limits

The velocity limits are clamped at 20% of the ranges given in Table 10.

6.3.3. Bounds Checking

No bounds checking of the position of the particles is performed as any solution
that provides a good transform between distorted points and corrected points can be
implemented.
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6.4. Results
6.4.1. Synthetic Data Results

A synthetic chart, shown in Figure 22, with 19 × 19 dots, is generated using random
perspective, user variable lens distortion 0.3 and optical centre (4,−5).

Figure 22. Generated synthetic image example.

The PSO algorithm and CMA-ES [35] algorithm were used to find solutions to map
the distorted points to undistorted points.

Both CMA-ES and PSO algorithms give similar results of max pixel error from 0.22 to
0.28 and average pixel error from 0.09 to 0.08.

6.4.2. Real Data Results

A calibration chart, shown in Figure 23, with 19× 19 dots was manually placed under
the camera and positioned in the approximate centre of the field of view. The dots were
detected with a blob detector and their centre recorded as per Figure 24.

The PSO algorithm and CMA-ES [35] algorithm were used to find solutions to map
the distorted points to undistorted points. A library was used to implement the CMA-ES
function [47]. The results are shown in Tables 11 and 12, respectively.

Figure 23. Cal chart.
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Figure 24. Detected points.

Table 11. PSO real results.

Run Loss Max Pix Error Avg Pix Error

1 186.7 1.55 0.62
2 187.6 1.67 0.62
3 187.2 1.64 0.62
4 209.9 1.87 0.66
5 212.9 1.88 0.67
6 250.8 2.04 0.72
7 209.4 1.83 0.66
8 229.1 2.02 0.69
9 187.9 1.70 0.62
10 224.6 1.91 0.68

Table 12. CMA-ES real results.

Run Loss Max Pix Error Avg Pix Error

1 168.2 1.67 0.59
2 168.3 1.67 0.59
3 167.8 1.67 0.59
4 167.8 1.67 0.59
5 168.2 1.67 0.59
6 168.3 1.67 0.59
7 168.0 1.67 0.59
8 168.8 1.67 0.59
9 167.8 1.67 0.59
10 167.8 1.67 0.59

In total, 12 images were taken with a reference ruler in different positions and points
10 mm apart were selected manually. Figure 25 shows these images and the reference
10 mm measurements.

Referring to Table 13, the points at the start and end of each 10 mm measurement
are shown, with P1x, P1y being one point and P2x, P2y being the second point. The real
number of pixels between the points is shown in the Rpix column.

Each point is transformed using the solutions found and the predicted number of
pixels between the transformed points is given in the Ppix column. The average of the
predicted number of pixels is divided by 12 to give a pixel to mm ratio. This ratio is
multiplied by the predicted number of pixels to give a predicted length shown in column
Plen. The real length, column Rlen is calculated the same way.
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Figure 25. Twelve sample images, including a reference ruler, used for evaluating the image distortion
algorithms.

Table 13. Resultsonrealimage using CMA-ES and PSO. The first column (#) reports the measurement
number (see Figure 25) while raw data are reported in the second column as reference.

# Raw Data CMA-ES PSO
P1x P1y P2x P2y Rpix Ppix Rlen Plen Ppix Rlen Plen

1 550 631 1395 633 845.0 857.5 9.850 10.008 856.3 9.850 9.994
2 552 144 1402 148 850.0 857.3 9.909 10.006 857.0 9.909 10.002
3 551 1034 1407 1039 856.0 856.1 9.979 9.992 856.3 9.979 9.995
4 390 971 1141 562 855.2 856.6 9.969 9.998 857.5 9.969 10.009
5 792 451 1537 870 854.7 856.7 9.964 9.999 857.4 9.964 10.007
6 61 925 49 48 877.1 857.3 10.224 10.006 877.1 10.224 10.007
7 500 954 495 102 852.0 856.9 9.932 10.002 857.2 9.932 10.005
8 922 940 926 96 844.0 857.3 9.839 10.007 856.4 9.839 9.996
9 1300 961 1294 111 850.0 857.1 9.909 10.004 856.8 9.909 10.001

10 1834 939 1832 60 879.0 856.2 10.247 9.993 856.2 10.247 9.993
11 863 266 1726 266 863.0 856.4 10.060 9.995 856.5 10.060 9.997
12 888 833 1756 844 868.1 856.2 10.119 9.993 856.2 10.119 9.994

The resolution in the horizontal direction is 10 mm ÷ 1920 = 5.2 um and in the vertical
direction is 10 mm ÷ 1080 = 9.26 um. When no image distortion correction is used, a
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maximum measurement error of 247 um (Table 13) is found. Using the best CMA-ES
solution, the maximum error is 8 um.

The PSO Search was run 10 times and the maximum error logged for each run. Results
are shown in Table 14. This gives a standard deviation σ of 2.24, a mean of 8.4 and a
variance of 5.04.

Table 14. PSO real results over 10 searches.

Run Max Pix Error (um)

1 7
2 7
3 8
4 9
5 6
6 12
7 6
8 13
9 8

10 8

7. Conclusions

We have shown some software components of a digital inspection microscope for
testing medical devices. The underlying theme is the use of PSO as an algorithm in many
different tasks. We have shown that such a heuristic algorithm provides good results for all
of them.

The first task sees the use of the PSO algorithm to improve upon the original calibration
system for the height from focus. Originally this was performed with a poor measurement
method, resulting in noisy data and required shipping the microscope back to factory.
In the new approach, the PSO is used to optimally fit a polynomial to these noisy data
automatically, thus creating a smoother calibrating model. This method has been shown to
significantly increase the accuracy of the system. It is important to take sufficient samples
for this method to work. When trying to replace PSO with more complex algorithms, i.e.,
the CMA-ES, we noted only a marginal difference in the results, which is not significant
enough to use this computationally more expensive algorithm. The method used shows the
viability of calibrating a system for this and other measurements prior to having optimised
measurement methods, and releasing those systems to customers and correcting the noisy
calibration data once the measurements are optimised.

The second important task is the so-called matching of images for image stitching.
Here, we improve a conventional template matching algorithm using PSO. Results show
that the newly proposed approach is most accurate when the object has a low variance in
features as this results in an ideal search space. When there are many features, the search
space results in a very small area. If no particle explores this area, then the matching fails;
however, when there are many features, standard interest point matching can be used.
The PSO matching time takes approximately 365 ms and the matching function was 100%
accurate on every run of experiments 1 and 2 in Section 4.3 with maximum dropout (25%)
and noise (10%). With PSO-supported 2D point cloud matching, we introduce a method
to deal with cases where neither feature point matching nor template matching can be
applied. This works by adding laser points to the scene and shows a lot of promise. Using
PSO provides a robust solution and creating interest points using distance to other points
results in the potential for real-time matching.

Thirdly, the problem of colour correction is tackled by using a PSO algorithm with
no outlier rejection. This produces a colour correction matrix as good as, or slightly better
than, the standard pseudo-inverse matrix method. Adding outlier rejection decreased the
error by 11.3%, visibly improving the colour reproduction. Hence, the PSO algorithm is
reliable in this application and beats conventional algorithms.
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Fourthly, image distortions are corrected through PSO and CMA-ES. Here, the CMA-
ES search seems to be more consistent across multiple runs than the PSO search, which
also gave satisfactory results. Indeed, the PSO search for a solution to image distortion
correction has been shown to increase measurement accuracy from 247 µm to average
accuracy of 8.4 µm. As this calibration is performed once per system, a number of runs
could be made and the lowest error homography matrix and polynomial constants picked,
reaching the quality of CMA-ES.

Overall, there are many potential uses of PSO in this application. We have demon-
strated four of them. In all cases, the PSO-based algorithm can either reach the quality of
the current best approach or beat it. In some cases, it also offers a speed advantage. In this
way, we have demonstrated the applicability of PSO in an industrial setting.
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