12 research outputs found

    Mathematical modelling ano optimization strategies for acoustic source localization in reverberant environments

    Get PDF
    La presente Tesis se centra en el uso de técnicas modernas de optimización y de procesamiento de audio para la localización precisa y robusta de personas dentro de un entorno reverberante dotado con agrupaciones (arrays) de micrófonos. En esta tesis se han estudiado diversos aspectos de la localización sonora, incluyendo el modelado, la algoritmia, así como el calibrado previo que permite usar los algoritmos de localización incluso cuando la geometría de los sensores (micrófonos) es desconocida a priori. Las técnicas existentes hasta ahora requerían de un número elevado de micrófonos para obtener una alta precisión en la localización. Sin embargo, durante esta tesis se ha desarrollado un nuevo método que permite una mejora de más del 30\% en la precisión de la localización con un número reducido de micrófonos. La reducción en el número de micrófonos es importante ya que se traduce directamente en una disminución drástica del coste y en un aumento de la versatilidad del sistema final. Adicionalmente, se ha realizado un estudio exhaustivo de los fenómenos que afectan al sistema de adquisición y procesado de la señal, con el objetivo de mejorar el modelo propuesto anteriormente. Dicho estudio profundiza en el conocimiento y modelado del filtrado PHAT (ampliamente utilizado en localización acústica) y de los aspectos que lo hacen especialmente adecuado para localización. Fruto del anterior estudio, y en colaboración con investigadores del instituto IDIAP (Suiza), se ha desarrollado un sistema de auto-calibración de las posiciones de los micrófonos a partir del ruido difuso presente en una sala en silencio. Esta aportación relacionada con los métodos previos basados en la coherencia. Sin embargo es capaz de reducir el ruido atendiendo a parámetros físicos previamente conocidos (distancia máxima entre los micrófonos). Gracias a ello se consigue una mejor precisión utilizando un menor tiempo de cómputo. El conocimiento de los efectos del filtro PHAT ha permitido crear un nuevo modelo que permite la representación 'sparse' del típico escenario de localización. Este tipo de representación se ha demostrado ser muy conveniente para localización, permitiendo un enfoque sencillo del caso en el que existen múltiples fuentes simultáneas. La última aportación de esta tesis, es el de la caracterización de las Matrices TDOA (Time difference of arrival -Diferencia de tiempos de llegada, en castellano-). Este tipo de matrices son especialmente útiles en audio pero no están limitadas a él. Además, este estudio transciende a la localización con sonido ya que propone métodos de reducción de ruido de las medias TDOA basados en una representación matricial 'low-rank', siendo útil, además de en localización, en técnicas tales como el beamforming o el autocalibrado

    Towards End-to-End Acoustic Localization using Deep Learning: from Audio Signal to Source Position Coordinates

    Full text link
    This paper presents a novel approach for indoor acoustic source localization using microphone arrays and based on a Convolutional Neural Network (CNN). The proposed solution is, to the best of our knowledge, the first published work in which the CNN is designed to directly estimate the three dimensional position of an acoustic source, using the raw audio signal as the input information avoiding the use of hand crafted audio features. Given the limited amount of available localization data, we propose in this paper a training strategy based on two steps. We first train our network using semi-synthetic data, generated from close talk speech recordings, and where we simulate the time delays and distortion suffered in the signal that propagates from the source to the array of microphones. We then fine tune this network using a small amount of real data. Our experimental results show that this strategy is able to produce networks that significantly improve existing localization methods based on \textit{SRP-PHAT} strategies. In addition, our experiments show that our CNN method exhibits better resistance against varying gender of the speaker and different window sizes compared with the other methods.Comment: 18 pages, 3 figures, 8 table

    Acoustic localization of people in reverberant environments using deep learning techniques

    Get PDF
    La localización de las personas a partir de información acústica es cada vez más importante en aplicaciones del mundo real como la seguridad, la vigilancia y la interacción entre personas y robots. En muchos casos, es necesario localizar con precisión personas u objetos en función del sonido que generan, especialmente en entornos ruidosos y reverberantes en los que los métodos de localización tradicionales pueden fallar, o en escenarios en los que los métodos basados en análisis de vídeo no son factibles por no disponer de ese tipo de sensores o por la existencia de oclusiones relevantes. Por ejemplo, en seguridad y vigilancia, la capacidad de localizar con precisión una fuente de sonido puede ayudar a identificar posibles amenazas o intrusos. En entornos sanitarios, la localización acústica puede utilizarse para controlar los movimientos y actividades de los pacientes, especialmente los que tienen problemas de movilidad. En la interacción entre personas y robots, los robots equipados con capacidades de localización acústica pueden percibir y responder mejor a su entorno, lo que permite interacciones más naturales e intuitivas con los humanos. Por lo tanto, el desarrollo de sistemas de localización acústica precisos y robustos utilizando técnicas avanzadas como el aprendizaje profundo es de gran importancia práctica. Es por esto que en esta tesis doctoral se aborda dicho problema en tres líneas de investigación fundamentales: (i) El diseño de un sistema extremo a extremo (end-to-end) basado en redes neuronales capaz de mejorar las tasas de localización de sistemas ya existentes en el estado del arte. (ii) El diseño de un sistema capaz de localizar a uno o varios hablantes simultáneos en entornos con características y con geometrías de arrays de sensores diferentes sin necesidad de re-entrenar. (iii) El diseño de sistemas capaces de refinar los mapas de potencia acústica necesarios para localizar a las fuentes acústicas para conseguir una mejor localización posterior. A la hora de evaluar la consecución de dichos objetivos se han utilizado diversas bases de datos realistas con características diferentes, donde las personas involucradas en las escenas pueden actuar sin ningún tipo de restricción. Todos los sistemas propuestos han sido evaluados bajo las mismas condiciones consiguiendo superar en términos de error de localización a los sistemas actuales del estado del arte

    Analytical model for the relation between signal bandwidth and spatial resolution in Steered-Response Power Phase Transform (SRP-PHAT) maps

    Full text link
    An analysis of the relationship between the bandwidth of acoustic signals and the required resolution of steered-response power phase transform (SRP-PHAT) maps used for sound source localization is presented. This relationship does not rely on the far-field assumption, nor does it depend on any specific array topology. The proposed analysis considers the computation of a SRP map as a process of sampling a set of generalized cross-correlation (GCC) functions, each one corresponding to a different microphone pair. From this approach, we derive a rule that relates GCC bandwidth with inter-microphone distance, resolution of the SRP map, and the potential position of the sound source relative to the array position. This rule is a sufficient condition for an aliasing-free calculation of the specified SRP-PHAT map. Simulation results show that limiting the bandwidth of the GCC according to such rule leads to significant reductions in sound source localization errors when sources are not in the immediate vicinity of the microphone array. These error reductions are more relevant for coarser resolutions of the SRP map, and they happen in both anechoic and reverberant environments.Comment: Any paper that cite this one has to thank IEEE for easing the open access of the articl

    Design, implementation and evaluation of an acoustic source localization system using Deep Learning techniques

    Get PDF
    This Master Thesis presents a novel approach for indoor acoustic source localization using microphone arrays, based on a Convolutional Neural Network (CNN) that we call the ASLNet. It directly estimates the three-dimensional position of a single acoustic source using as inputs the raw audio signals from a set of microphones. We use supervised learning methods to train our network end-to-end. The amount of labeled training data available for this problem is however small. This Thesis presents a training strategy based on two steps that mitigates this problem. We first train our network using semi-synthetic data generated from close talk speech recordings and a mathematical model for signal propagation from the source to the microphones. The amount of semi-synthetic data can be virtually as large as needed. We then fine tune the resulting network using a small amount of real data. Our experimental results, evaluated on a publicly available dataset recorded in a real room, show that this approach is able to improve existing localization methods based on SRP-PHAT strategies and also those presented in very recent proposals based on Convolutional Recurrent Neural Networks (CRNN). In addition, our experiments show that the performance of the ASLNet does not show a relevant dependency on the speaker’s gender, nor on the size of the signal window being used. This work also investigates methods to improve the generalization properties of our network using only semi-synthetic data for training. This is a highly important objective due to the cost of labelling localization data. We proceed by including specific effects in the input signals to force the network to be insensitive to multipath, high noise and distortion likely to be present in real scenarios. We obtain promising results with this strategy although they still lack behind strategies based on fine-tuning.Máster Universitario en Ingeniería de Telecomunicación (M125

    Low-Complexity Steered Response Power Mapping based on Nyquist-Shannon Sampling

    Full text link
    The steered response power (SRP) approach to acoustic source localization computes a map of the acoustic scene from the frequency-weighted output power of a beamformer steered towards a set of candidate locations. Equivalently, SRP may be expressed in terms of time-domain generalized cross-correlations (GCCs) at lags equal to the candidate locations' time-differences of arrival (TDOAs). Due to the dense grid of candidate locations, each of which requires inverse Fourier transform (IFT) evaluations, conventional SRP exhibits a high computational complexity. In this paper, we propose a low-complexity SRP approach based on Nyquist-Shannon sampling. Noting that on the one hand the range of possible TDOAs is physically bounded, while on the other hand the GCCs are bandlimited, we critically sample the GCCs around their TDOA interval and approximate the SRP map by interpolation. In usual setups, the number of sample points can be orders of magnitude less than the number of candidate locations and frequency bins, yielding a significant reduction of IFT computations at a limited interpolation cost. Simulations comparing the proposed approximation with conventional SRP indicate low approximation errors and equal localization performance. MATLAB and Python implementations are available online

    Novel GCC-PHAT Model in Diffuse Sound Field for Microphone Array Pairwise Distance Based Calibration

    Get PDF
    We propose a novel formulation of the generalized cross correlation with phase transform (GCC-PHAT) for a pair of microphones in diffuse sound field. This formulation elucidates the links between the microphone distances and the GCC-PHAT output. Hence, it leads to a new model that enables estimation of the pairwise distances by optimizing over the distances best matching the GCC-PHAT observations. Furthermore, the relation of this model to the coherence function is elaborated along with the dependency on the signal bandwidth. The experiments conducted on real data recordings demonstrate the theories and support the effectiveness of the proposed method

    A Geometric Deep Learning Approach to Sound Source Localization and Tracking

    Get PDF
    La localización y el tracking de fuentes sonoras mediante agrupaciones de micrófonos es un problema que, pese a llevar décadas siendo estudiado, permanece abierto. En los últimos años, modelos basados en deep learning han superado el estado del arte que había sido establecido por las técnicas clásicas de procesado de señal, pero estos modelos todavía presentan problemas para trabajar en espacios con alta reverberación o para realizar el tracking de varias fuentes sonoras, especialmente cuando no es posible aplicar ningún criterio para clasificarlas u ordenarlas. En esta tesis, se proponen nuevos modelos que, basados en las ideas del Geometric Deep Learning, suponen un avance en el estado del arte para las situaciones mencionadas previamente.Los modelos propuestos utilizan como entrada mapas de potencia acústica calculados con el algoritmo SRP-PHAT, una técnica clásica de procesado de señal que permite estimar la energía acústica recibida desde cualquier dirección del espacio. Además, también proponemos una nueva técnica para suprimir analíticamente el efecto de una fuente en las funciones de correlación cruzada usadas para calcular los mapas SRP-PHAT. Basándonos en técnicas de banda estrecha, se demuestra que es posible proyectar las funciones de correlación cruzada de las señales capturadas por una agrupación de micrófonos a un espacio ortogonal a una dirección dada simplemente usando una combinación lineal de las funciones originales con retardos temporales. La técnica propuesta puede usarse para diseñar sistemas iterativos de localización de múltiples fuentes que, tras localizar la fuente con mayor energía en las funciones de correlación cruzada o en los mapas SRP-PHAT, la cancelen para poder encontrar otras fuentes que estuvieran enmascaradas por ella.Antes de poder entrenar modelos de deep learning necesitamos datos. Esto, en el caso de seguir un esquema de aprendizaje supervisado, supone un dataset de grabaciones de audio multicanal con la posición de las fuentes etiquetada con precisión. Pese a que existen algunos datasets con estas características, estos no son lo suficientemente extensos para entrenar una red neuronal y los entornos acústicos que incluyen no son suficientemente variados. Para solventar el problema de la falta de datos, presentamos una técnica para simular escenas acústicas con una o varias fuentes en movimiento y, para realizar estas simulaciones conforme son necesarias durante el entrenamiento de la red, presentamos la que es, que sepamos, la primera librería de software libre para la simulación de acústica de salas con aceleración por GPU. Tal y como queda demostrado en esta tesis, esta librería es más de dos órdenes de magnitud más rápida que otras librerías del estado del arte.La idea principal del Geometric Deep Learning es que los modelos deberían compartir las simetrías (i.e. las invarianzas y equivarianzas) de los datos y el problema que se quiere resolver. Para la estimación de la dirección de llegada de una única fuente, el uso de mapas SRP-PHAT como entrada de nuestros modelos hace que la equivarianza a las rotaciones sea obvia y, tras presentar una primera aproximación usando redes convolucionales tridimensionales, presentamos un modelo basado en convoluciones icosaédricas que son capaces de aproximar la equivarianza al grupo continuo de rotaciones esféricas por la equivarianza al grupo discreto de las 60 simetrías del icosaedro. En la tesis se demuestra que los mapas SRP-PHAT son una característica de entrada mucho más robusta que los espectrogramas que se usan típicamente en muchos modelos del estado del arte y que el uso de las convoluciones icosaédricas, combinado con una nueva función softargmax que obtiene una salida de regresión a partir del resultado de una red convolucional interpretándolo como una distribución de probabilidad y calculando su valor esperado, permite reducir enormemente el número de parámetros entrenables de los modelos sin reducir la precisión de sus estimaciones.Cuando queremos realizar el tracking de varias fuentes en movimiento y no podemos aplicar ningún criterio para ordenarlas o clasificarlas, el problema se vuelve invariante a las permutaciones de las estimaciones, por lo que no podemos compararlas directamente con las etiquetas de referencia dado que no podemos esperar que sigan el mismo orden. Este tipo de modelos se han entrenado típicamente usando estrategias de entrenamiento invariantes a las permutaciones, pero estas normalmente no penalizan los cambios de identidad por lo que los modelos entrenados con ellas no mantienen la identidad de cada fuente de forma consistente. Para resolver este problema, en esta tesis proponemos una nueva estrategia de entrenamiento, a la que llamamos sliding permutation invariant training (sPIT), que es capaz de optimizar todas las características que podemos esperar de un sistema de tracking de múltiples fuentes: la precisión de sus estimaciones de dirección de llegada, la exactitud de sus detecciones y la consistencia de las identidades asignadas a cada fuente.Finalmente, proponemos un nuevo tipo de red recursiva que usa conjuntos de vectores en lugar de vectores para representar su entrada y su estado y que es invariante a las permutaciones de los elementos del conjunto de entrada y equivariante a las del conjunto de estado. En esta tesis se muestra como este es el comportamiento que deberíamos esperar de un sistema de tracking que toma como entradas las estimaciones de un modelo de localización multifuente y se compara el rendimiento de estas redes recursivas invariantes a las permutaciones con redes recursivas GRU convencionales para aplicaciones de tracking de fuentes sonoras.The localization and tracking of sound sources using microphone arrays is a problem that, even if it has attracted attention from the signal processing research community for decades, remains open. In recent years, deep learning models have surpassed the state-of-the-art that had been established by classic signal processing techniques, but these models still struggle with handling rooms with strong reverberations or tracking multiple sources that dynamically appear and disappear, especially when we cannot apply any criteria to classify or order them. In this thesis, we follow the ideas of the Geometric Deep Learning framework to propose new models and techniques that mean an advance of the state-of-the-art in the aforementioned scenarios. As the input of our models, we use acoustic power maps computed using the SRP-PHAT algorithm, a classic signal processing technique that allows us to estimate the acoustic energy received from any direction of the space and, therefore, compute arbitrary-shaped power maps. In addition, we also propose a new technique to analytically cancel a source from the generalized cross-correlations used to compute the SRP-PHAT maps. Based on previous narrowband cancellation techniques, we prove that we can project the cross-correlation functions of the signals captured by a microphone array into a space orthogonal to a given direction by just computing a linear combination of time-shifted versions of the original cross-correlations. The proposed cancellation technique can be used to design iterative multi-source localization systems where, after having found the strongest source in the generalized cross-correlation functions or in the SRP-PHAT maps, we can cancel it and find new sources that were previously masked by thefirst source. Before being able to train deep learning models we need data, which, in the case of following a supervised learning approach, means a dataset of multichannel recordings with the position of the sources accurately labeled. Although there exist some datasets like this, they are not large enough to train a neural network and the acoustic environments they include are not diverse enough. To overcome this lack of real data, we present a technique to simulate acoustic scenes with one or several moving sound sources and, to be able to perform these simulations as they are needed during the training, we present what is, to the best of our knowledge, the first free and open source room acoustics simulation library with GPU acceleration. As we prove in this thesis, the presented library is more than two orders of magnitude faster than other state-of-the-art CPU libraries. The main idea of the Geometric Deep Learning philosophy is that the models should fit the symmetries (i.e. the invariances and equivariances) of the data and the problem we want to solve. For single-source direction of arrival estimation, the use of SRP-PHAT maps as inputs of our models makes the rotational equivariance of the problem undeniably clear and, after a first approach using 3D convolutional neural networks, we present a model using icosahedral convolutions that approximate the equivariance to the continuous group of spherical rotations by the discrete group of the 60 icosahedral symmetries. We prove that the SRP-PHAT maps are a much more robust input feature than the spectrograms typically used in many state-of-the-art models and that the use of the icosahedral convolutions, combined with a new soft-argmax function that obtains a regression output from the output of the convolutional neural network by interpreting it as a probability distribution and computing its expected value, allows us to dramatically reduce the number of trainable parameters of the models without losing accuracy in their estimations. When we want to track multiple moving sources and we cannot use any criteria to order or classify them, the problem becomes invariant to the permutations of the estimates, so we cannot directly compare them with the ground truth labels since we cannot expect them to be in the same order. This kind of models has typically been trained using permutation invariant training strategies, but these strategies usually do not penalize the identity switches and the models trained with them do not keep the identity of every source consistent during the tracking. To solve this issue, we propose a new training strategy, which we call sliding permutation invariant training, that is able to optimize all the features that we could expect from a multi-source tracking system: the precision of the direction of arrival estimates, the accuracy of the source detections, and the consistency of the assigned identities. Finally, we propose a new kind of recursive neural network that, instead of using vectors as their input and their state, uses sets of vectors and is invariant to the permutation of the elements of the input set and equivariant to the permutations of the elements of the state set. We show how this is the behavior that we should expect from a tracking model which takes as inputs the estimates of a multi-source localization model and compare these permutation-invariant recursive neural networks with the conventional gated recurrent units for sound source tracking applications.<br /
    corecore