54 research outputs found

    On the Throughput Allocation for Proportional Fairness in Multirate IEEE 802.11 DCF

    Full text link
    This paper presents a modified proportional fairness (PF) criterion suitable for mitigating the \textit{rate anomaly} problem of multirate IEEE 802.11 Wireless LANs employing the mandatory Distributed Coordination Function (DCF) option. Compared to the widely adopted assumption of saturated network, the proposed criterion can be applied to general networks whereby the contending stations are characterized by specific packet arrival rates, λs\lambda_s, and transmission rates RdsR_d^{s}. The throughput allocation resulting from the proposed algorithm is able to greatly increase the aggregate throughput of the DCF while ensuring fairness levels among the stations of the same order of the ones available with the classical PF criterion. Put simply, each station is allocated a throughput that depends on a suitable normalization of its packet rate, which, to some extent, measures the frequency by which the station tries to gain access to the channel. Simulation results are presented for some sample scenarios, confirming the effectiveness of the proposed criterion.Comment: Submitted to IEEE CCNC 200

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    Weighted proportional fairness and pricing based resource allocation for uplink offloading using IP flow mobility

    Get PDF
    Mobile data offloading has been proposed as a solution for the network congestion problem that is continuously aggravating due to the increase in mobile data demand. However, the majority of the state-of-the-art is focused on the downlink offloading, while the change of mobile user habits, like mobile content creation and uploading, makes uplink offloading a rising issue. In this work we focus on the uplink offloading using IP Flow Mobility (IFOM). IFOM allows a LTE mobile User Equipment (UE) to maintain two concurrent data streams, one through LTE and the other through WiFi access technology, that presents uplink limitations due to the inherent fairness design of IEEE 802.11 DCF by employing the CSMA/CA scheme with a binary exponential backoff algorithm. In this paper, we propose a weighted proportionally fair bandwidth allocation algorithm for the data volume that is being offloaded through WiFi, in conjunction with a pricing-based rate allocation for the rest of the data volume needs of the UEs that are transmitted through the LTE uplink. We aim to improve the energy efficiency of the UEs and to increase the offloaded data volume under the concurrent use of access technologies that IFOM allows. In the weighted proportionally fair WiFi bandwidth allocation, we consider both the different upload data needs of the UEs, along with their LTE spectrum efficiency and propose an access mechanism that improves the use of WiFi access in uplink offloading. In the LTE part, we propose a two-stage pricing-based rate allocation under both linear and exponential pricing approaches, aiming to satisfy all offloading UEs regarding their LTE uplink access. We theoretically analyse the proposed algorithms and evaluate their performance through simulations. We compare their performance with the 802.11 DCF access scheme and with a state-of-the-art access algorithm under different number of offloading UEs and for both linear and exponential pricing-based rate allocation for the LTE uplink. Through the evaluation of energy efficiency, offloading capabilities and throughput performance, we provide an improved uplink access scheme for UEs that operate with IFOM for uplink offloading.Peer ReviewedPreprin

    Rigorous and Practical Proportional-fair Allocation for Multi-rate Wi-Fi

    Get PDF
    Recent experimental studies confirm the prevalence of the widely known performance anomaly problem in current Wi-Fi networks, and report on the severe network utility degradation caused by this phenomenon. Although a large body of work addressed this issue, we attribute the refusal of prior solutions to their poor implementation feasibility with off-the-shelf hardware and their impre- cise modelling of the 802.11 protocol. Their applicability is further challenged today by very high throughput enhancements (802.11n/ac) whereby link speeds can vary by two orders of magnitude. Unlike earlier approaches, in this paper we introduce the first rigorous analytical model of 802.11 stations’ throughput and airtime in multi-rate settings, without sacrificing accuracy for tractability. We use the proportional-fair allocation criterion to formulate network utility maximisation as a con- vex optimisation problem for which we give a closed-form solution. We present a fully functional light-weight implementation of our scheme on commodity access points and evaluate this extensively via experiments in a real deployment, over a broad range of network conditions. Results demonstrate that our proposal achieves up to 100% utility gains, can double video streaming goodput and reduces TCP download times by 8x

    Resource allocation in networks from a connection-level perspective (Asignación de recursos en redes desde la perspectiva de las conexiones)

    Get PDF
    En esta tesis, se analizan varios problemas de asignación recursos que surgen en el estudio de los sistemas de telecomunicaciones. En particular, nos centramos en las redes de datos, de los cuales el ejemplo más importante es la Internet global. En este tipo de redes, el recurso escaso que debe ser asignado es la cantidad de ancho de banda de cada conexión curso. Esta asignación realiza en tiempo real por los protocolos subyacentes, que técniamente se encuentran divididos en varios niveles o capas. Desde este punto de vista, la red puede ser pensada como un sistema de control a gran escala, donde cada entidad debe seguir un conjunto dado de leyes de control, a fin de encontrar una asignación adecuada de recursos. Desde el influyente trabajo de Kelly et. al., este problema se ha expresado en términos económicos, dando lugar a la teoría conocida como Network Utility Maximization (maximización de utilidad en redes). Este marco ha demostrado ser una herramienta valiosa para analizar los mecanismos existentes y diseño de protocolos nuevos que mejoran el comportamiento de la red. Proporciona además un vínculo crucial entre el tradicional análisis por capas de los protocolos de red y las técnicas de optimización convexa, dando lugar a lo que se denomina análisis multi-capa de las redes. En este trabajo nos centramos en el análisis de la red desde una perspectiva a nivel de conexiones. En particular, se estudia el desempeño de eficiencia y justicia en la escala de conexiones de varios modelos de asignación de recursos en la red. Este estudio se realiza en varios escenarios: tanto single-path como multi-path (redes con múltiples caminos) así como escenarios cableados e inalámbricos. Se analizan en detalle dos problemas importantes: por un lado, la asignación de los recursos realizada por los protocolos de control de congestión cuando se permiten varias conexiones por usuario. Se identifican algunos problemas del paradigma actual, y se propone un nuevo concepto de \emph{equidad centrada en el usuario}, desarrollando a su vez algoritmos descentralizados que se pueden aplicar en los extremos de la red, y que conducen al sistema a un global adecuado. El segundo problema importante analizado aquí es la asignación de los recursos realizada por los algoritmos de control de congestión cuando trabajan sobre una capa física que permite múltiples velocidades de transmisión como es el caso en las redes inalámbricas. Se demuestra que los algoritmos usuales conducen a ineficiencias importantes desde el punto de vista de las conexiones, y se proponen mecanismos para superar estas ineficiencias y mejorar la asignación de los recursos prestados por dichas redes. A lo largo de este trabajo, se aplican varias herramientas matemáticas, tales como la optimización convexa, la teoría de control y los procesos estocásticos. Por medio de estas herramientas, se construye un modelo del sistema, y se desarrollan leyes de control y algoritmos para lograr el objetivo de desempeño deseado. Como paso final, estos algoritmos fueron probados a través de simulaciones a nivel de paquetes de las redes involucradas, proporcionando la validación de la teoría y la evidencia de que pueden aplicarse en la práctica

    Hybrid Control of Contention Window and Frame Aggregation for Performance Enhancement in Multirate WLANs

    Get PDF

    Control-theoretic approaches for efficient transmission on IEEE 802.11e wireless networks

    Get PDF
    With the increasing use of multimedia applications on the wireless network, the functionalities of the IEEE 802.11 WLAN was extended to allow traffic differentiation so that priority traffic gets quicker service time depending on their Quality of Service (QoS) requirements. The extended functionalities contained in the IEEE Medium Access Control (MAC) and Physical Layer (PHY) Specifications, i.e. the IEEE 802.11e specifications, are recommended values for channel access parameters along traffic lines and the channel access parameters are: the Minimum Contention Window CWmin, Maximum Contention Window CWmax, Arbitration inter-frame space number, (AIFSN) and the Transmission Opportunity (TXOP). These default Enhanced Distributed Channel Access (EDCA) contention values used by each traffic type in accessing the wireless medium are only recommended values which could be adjusted or changed based on the condition of number of associated nodes on the network. In particular, we focus on the Contention Window (CW) parameter and it has been shown that when the number of nodes on the network is small, a smaller value of CWmin should be used for channel access in order to avoid underutilization of channel time and when the number of associated nodes is large, a larger value of CWmin should be used in order to avoid large collisions and retransmissions on the network. Fortunately, allowance was made for these default values to be adjusted or changed but the challenge has been in designing an algorithm that constantly and automatically tunes the CWmin value so that the Access Point (AP) gives out the right CWmin value to be used on the WLAN and this value should be derived based on the level of activity experienced on the network or predefined QoS constraints while considering the dynamic nature of the WLAN. In this thesis, we propose the use of feedback based control and we design a controller for wireless medium access. The controller will give an output which will be the EDCA CWmin value to be used by contending stations/nodes in accessing the medium and this value will be based on current WLAN conditions. We propose the use of feedback control due to its established mathematical concepts particularly for single-input-single-output systems and multi-variable systems which are scenarios that apply to the WLAN

    Enabling Dynamic Spectrum Allocation in Cognitive Radio Networks

    Get PDF
    The last decade has witnessed the proliferation of innovative wireless technologies, such asWi-Fi, wireless mesh networks, operating in unlicensed bands. Due to the increasing popularity and the wide deployments of these technologies, the unlicensed bands become overcrowded. The wireless devices operating in these bands interfere with each other and hurt the overall performance. To support fast growths of wireless technologies, more spectrums are required. However, as most "prime" spectrum has been allocated, there is no spectrum available to expand these innovative wireless services. Despite the general perception that there is an actual spectral shortage, the recent measurement results released by the FCC (Federal Communications Commission) show that on average only 5% of the spectrum from 30MHz to 30 GHz is used in the US. This indicates that the inefficient spectrum usage is the root cause of the spectral shortage problem. Therefore, this dissertation is focused on improving spectrum utilization and efficiency in tackling the spectral shortage problem to support ever-growing user demands for wireless applications. This dissertation proposes a novel concept of dynamic spectrum allocation, which adaptively divides available spectrum into non-overlapping frequency segments of different bandwidth considering the number of potentially interfering transmissions and the distribution of traffic load in a local environment. The goals are (1) to maximize spectrum efficiency by increasing parallel transmissions and reducing co-channel interferences, and (2) to improve fairness across a network by balancing spectrum assignments. Since existing radio systems offer very limited flexibility, cognitive radios, which can sense and adapt to radio environments, are exploited to support such a dynamic concept. We explore two directions to improve spectrum efficiency by adopting the proposed dynamic allocation concept. First, we build a cognitive wireless system called KNOWS to exploit unoccupied frequencies in the licensed TV bands. KNOWS is a hardware-software platform that includes new radio hardware, a spectrum-aware MAC (medium access control) protocol and an algorithm for implementing the dynamic spectrum allocation. We show that KNOWS accomplishes a remarkable 200% throughput gain over systems based on fixed allocations in common cases. Second, we enhance Wireless LANs (WLANs), the most popular network setting in unlicensed bands, by proposing a dynamic channelization structure and a scalable MAC design. Through analysis and extensive simulations, we show that the new channelization structure and the scalable MAC design improve not only network capacity but per-client fairness by allocating channels of variable width for access points in a WLAN. As a conclusion, we believe that our proposed concept of dynamic spectrum allocation lays down a solid foundation for building systems to efficiently use the invaluable spectrum resource
    • …
    corecore