46 research outputs found

    Efficient implementation of filter bank multicarrier systems using circular fast convolution

    Get PDF
    In this paper, filter bank-based multicarrier systems using a fast convolution approach are investigated. We show that exploiting offset quadrature amplitude modulation enables us to perform FFT/IFFT-based convolution without overlapped processing, and the circular distortion can be discarded as a part of orthogonal interference terms. This property has two advantages. First, it leads to spectral efficiency enhancement in the system by removing the prototype filter transients. Second, the complexity of the system is significantly reduced as the result of using efficient FFT algorithms for convolution. The new scheme is compared with the conventional waveforms in terms of out-of-band radiation, orthogonality, spectral efficiency, and complexity. The performance of the receiver and the equalization methods are investigated and compared with other waveforms through simulations. Moreover, based on the time variant nature of the filter response of the proposed scheme, a pilot-based channel estimation technique with controlled transmit power is developed and analyzed through lower-bound derivations. The proposed transceiver is shown to be a competitive solution for future wireless networks

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Evaluation Of Multicarrier Air Interfaces In The Presence Of Interference For L-Band And C-Band Air-Ground Communications

    Get PDF
    The use of aeronautical vehicles and systems is continuously growing, and this means current aeronautical communication systems, particularly those operating in the very high frequency (VHF) aviation band, will suffer from severe congestion in some regions of the world. For example, it is estimated that air-to-ground (AG) communication traffic density will at least double by 2035 over that in 2012, based on the most-likely growth scenario for Europe. This traffic growth (worldwide) has led civil aviation authorities such as the FAA in the USA, and EuroControl in Europe, to jointly explore development of future communication infrastructures (FCI). According to international aviation systems policies, both current and future AG communication systems will be deployed in L-band (960-1164 MHz), and possibly in C-band (5030-5091 GHz) because of the favorable AG radio propagation characteristics in these bands. During the same time period as the FCI studies, the use of multicarrier communication technologies has become very mature for terrestrial communication systems, but for AG systems it is still being studied and tested. Aiming toward future demands, EuroControl and FAA sponsored work to define several new candidate AG radio systems with high data rate and high reliability. Dominant among these is now an L-Band Digital Aeronautical Communication Systems (L-DACS): L-DACS1. L-DACS1 is a multicarrier communication system based on the popular orthogonal frequency division multiplexing (OFDM) modulation technique. For airport surface area communication systems used in C-band, EuroControl and FAA also proposed another OFDM communication system based on the IEEE 802.16e standard, termed aeronautical mobile airport communication system (AeroMACS). This system has been proposed to provide the growing need of communication traffic in airport environments. In this dissertation, first we review existing and proposed aviation communication systems in VHF-band, L-band and C-band. We then focus our study on the use of multicarrier techniques in these aviation bands. We compare the popular and dominant multicarrier technique OFDM (which is used in cellular networks such long-term evolution (LTE) and wireless local area networks such as Wi-Fi) with the filterbank multicarrier (FBMC) technique. As far as we are aware, we are the first to propose and evaluate FBMC for aviation communication systems. We show, using analysis and computer simulations, along with measurement based (NASA) air-ground and airport surface channel models, that FBMC offers advantages in performance over the OFDM schemes. Via use of sharp filters in the frequency domain, FBMC reduces out of band interference. Specifically, it is more robust to high-power distance measurement equipment (DME) interference, and via replacement of guard bands with data-bearing subcarriers, FBMC can offer higher throughput than the contending L-DACS1 scheme, by up to 23%. Similar advantages over AeroMACS pertain in the airport surface channel. Our FBMC bit error ratio performance is comparable to that of the OFDM schemes, and is even better for our “spectrally-shaped” version of FBMC. For these improvements, FBMC requires a modest complexity increase. Our final contribution in this dissertation is the presentation of spectrally shaped FBMC (SS-FBMC). This idea allocates unequal power to subcarriers to contend with non-white noise or non-white interference. Our adaptive algorithm selects a minimum number of guard subcarriers and then allocates power accordingly to remaining subcarriers based on a “water-filling-like” approach. We are the first to propose such a cognitive radio technique with FBMC for aviation applications. Results show that SSFBMC improves over FBMC in both performance and throughput

    Enhanced Multicarrier Techniques for Professional Ad-Hoc and Cell-Based Communications (EMPhAtiC) Document Number D3.3 Reduction of PAPR and non linearities effects

    Get PDF
    Livrable d'un projet Européen EMPHATICLike other multicarrier modulation techniques, FBMC suffers from high peak-to-average power ratio (PAPR), impacting its performance in the presence of a nonlinear high power amplifier (HPA) in two ways. The first impact is an in-band distortion affecting the error rate performance of the link. The second impact is an out-of-band effect appearing as power spectral density (PSD) regrowth, making the coexistence between FBMC based broad-band Professional Mobile Radio (PMR) systems with existing narrowband systems difficult to achieve. This report addresses first the theoretical analysis of in-band HPA distortions in terms of Bit Error Rate. Also, the out-of band impact of HPA nonlinearities is studied in terms of PSD regrowth prediction. Furthermore, the problem of PAPR reduction is addressed along with some HPA linearization techniques and nonlinearity compensation approaches
    corecore