58,860 research outputs found

    Skew-symmetric distributions and Fisher information -- a tale of two densities

    Get PDF
    Skew-symmetric densities recently received much attention in the literature, giving rise to increasingly general families of univariate and multivariate skewed densities. Most of those families, however, suffer from the inferential drawback of a potentially singular Fisher information in the vicinity of symmetry. All existing results indicate that Gaussian densities (possibly after restriction to some linear subspace) play a special and somewhat intriguing role in that context. We dispel that widespread opinion by providing a full characterization, in a general multivariate context, of the information singularity phenomenon, highlighting its relation to a possible link between symmetric kernels and skewing functions -- a link that can be interpreted as the mismatch of two densities.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ346 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Equations for general shells

    Full text link
    The complete set of (field) equations for shells of arbitrary, even changing, causal character are derived in arbitrary dimension. New equations that seem to have never been considered in the literature emerge, even in the traditional cases of everywhere non-null, or everywhere null, shells. In the latter case there arise field equations for some degrees of freedom encoded exclusively in the distributional part of the Weyl tensor. For non-null shells the standard Israel equations are recovered but not only, the additional relations containing also relevant information. The results are applicable to a widespread literature on domain walls, branes and braneworlds, gravitational layers, impulsive gravitational waves, and the like. Moreover, they are of a geometric nature, and thus they can be used in any theory based on a Lorentzian manifold.Comment: 32 pages, no figures. New paragraph and new footnote, plus some added references. Version to be publishe

    Geometry of General Hypersurfaces in Spacetime: Junction Conditions

    Full text link
    We study imbedded hypersurfaces in spacetime whose causal character is allowed to change from point to point. Inherited geometrical structures on these hypersurfaces are defined by two methods: first, the standard rigged connection induced by a rigging vector (a vector not tangent to the hypersurface anywhere); and a second, more physically adapted, where each observer in spacetime induces a new type of connection that we call the rigged metric connection. The generalisation of the Gauss and Codazzi equations are also given. With the above machinery, we attack the problem of matching two spacetimes across a general hypersurface. It is seen that the preliminary junction conditions allowing for the correct definition of Einstein's equations in the distributional sense reduce to the requirement that the first fundamental form of the hypersurface be continuous. The Bianchi identities are then proven to hold in the distributional sense. Next, we find the proper junction conditions which forbid the appearance of singular parts in the curvature. Finally, we derive the physical implications of the junction conditions: only six independent discontinuities of the Riemann tensor are allowed. These are six matter discontinuities at non-null points of the hypersurface. For null points, the existence of two arbitrary discontinuities of the Weyl tensor (together with four in the matter tensor) are also allowed.Comment: Latex, no figure

    Convex recovery of a structured signal from independent random linear measurements

    Get PDF
    This chapter develops a theoretical analysis of the convex programming method for recovering a structured signal from independent random linear measurements. This technique delivers bounds for the sampling complexity that are similar with recent results for standard Gaussian measurements, but the argument applies to a much wider class of measurement ensembles. To demonstrate the power of this approach, the paper presents a short analysis of phase retrieval by trace-norm minimization. The key technical tool is a framework, due to Mendelson and coauthors, for bounding a nonnegative empirical process.Comment: 18 pages, 1 figure. To appear in "Sampling Theory, a Renaissance." v2: minor corrections. v3: updated citations and increased emphasis on Mendelson's contribution
    • …
    corecore