1,044 research outputs found

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    From Super-Yang-Mills Theory to QCD: Planar Equivalence and its Implications

    Full text link
    We review and extend our recent work on the planar (large N) equivalence between gauge theories with varying degree of supersymmetry. The main emphasis is made on the planar equivalence between N=1 gluodynamics (super-Yang-Mills theory) and a non-supersymmetric "orientifold field theory." We outline an "orientifold" large N expansion, analyze its possible phenomenological consequences in one-flavor massless QCD, and make a first attempt at extending the correspondence to three massless flavors. An analytic calculation of the quark condensate in one-flavor QCD starting from the gluino condensate in N=1 gluodynamics is thoroughly discussed. We also comment on a planar equivalence involving N=2 supersymmetry, on "chiral rings" in non-supersymmetric theories, and on the origin of planar equivalence from an underlying, non-tachyonic type-0 string theory. Finally, possible further directions of investigation, such as the gauge/gravity correspondence in large-N orientifold field theory, are briefly discussed.Comment: 106 pages, LaTex. 15 figures. v2:minor changes, refs. added. To be published in the Ian Kogan Memorial Collection "From Fields to Strings: Circumnavigating Theoretical Physics," World Scientific, 200

    Towards a constrained Willmore conjecture

    Full text link
    We give an overview of the constrained Willmore problem and address some conjectures arising from partial results and numerical experiments. Ramifications of these conjectures would lead to a deeper understanding of the Willmore functional over conformal immersions from compact surfaces.Comment: 17page

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, χ(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for χ(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that χ(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with k3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    K_6 minors in 6-connected graphs of bounded tree-width

    Full text link
    We prove that every sufficiently big 6-connected graph of bounded tree-width either has a K_6 minor, or has a vertex whose deletion makes the graph planar. This is a step toward proving that the same conclusion holds for all sufficiently big 6-connected graphs. Jorgensen conjectured that it holds for all 6-connected graphs.Comment: 33 pages, 8 figure
    corecore