77 research outputs found

    Resource management for next generation multi-service mobile network

    Get PDF

    Investigation of Factors Influencing var Gene Expression in Plasmodium falciparum Parasites from Acute and Chronic Infections

    Get PDF
    Im Jahre 2015 gab es weltweit 214 Millionen neue MalariafĂ€lle und 438.000 TodesfĂ€lle durch Malaria. Der einzellige Parasit Plasmodium falciparum (P. falciparum) verursacht die schwerste Form der Malaria und ist verantwortlich fĂŒr die Mehrheit der auftretenden TodesfĂ€lle. Durch die Expression des Plasmodium falciparum erythrocyte membrane proteins 1 (PfEMP1) auf der OberflĂ€che von infizierten Erythrozyten können diese an Endothelrezeptoren des Wirts adhĂ€rieren, was zu den Symptomen der Malaria fĂŒhrt. PfEMP1 wird von der Familie der hypervariablen var-Gene kodiert. Jeder Parasit besitzt etwa 60 verschiedene var-Gene, von denen jeweils nur eins pro Parasit exprimiert wird. Ein stĂ€ndiger Wechsel des aktiv transkribierten var-Lokus fĂŒhrt zur Antigenvariation, die es dem Parasit ermöglicht, der Immunantwort des Wirtes zu entgehen. Im ersten Projekt dieser Dissertation konnte gezeigt werden, dass die Moskito- und Humanpassage bei malaria-naiven Individuen die var-Gen Transkription grundlegend verĂ€ndert. Die in vitro var-Gen Transkription wird maßgeblich durch die Replikationsdauer von P. falciparum im Wirt beeinflusst. Je lĂ€nger eine Parasitenpopulation der Rezeptorselektion im Wirt ausgesetzt ist, umso mehr verschiebt sich die var-Gen Transkription zugunsten von wenigen, sehr stark transkribierten var-Genen. Des weiteren wurde herausgefunden, dass die var-Gen Transkription in Abwesenheit eines Selektionsdrucks scheinbar vor allem durch ein festgelegtes genetisches Programm definiert wird. Die Daten aus dem zweiten Projekt dieser Dissertation weisen darauf hin, dass PfEMP1 nicht allein fĂŒr das variable OberflĂ€chensignal von Parasiten in chronischen Infektionen verantwortlich ist, sondern andere variable OberflĂ€chenproteine, wie z.B. die STEVOR und RIFIN Proteinfamilien, am variablen ObeflĂ€chensignal beteiligt sind. Zudem scheint die Rezeptorselektion in naiven Wirten und die Antikörperantwort in semi-immunen Wirten die var-Gen Expression zu beeinflussen. Im dritten Projekt dieser Dissertation konnte in zwei von 10 Feldisolaten aus verschiedenen afrikanischen Regionen ein var-Gen gefunden werden, welches ebenfalls konserviert ist. Die Feldisolate wiesen ansonsten eine hohe DiversitĂ€t in den nichtkodierenden Regionen auf. Dies weist auf eine Selektion gegen die DiversitĂ€t dieses spezifischen var-Genes hin. In zukĂŒnftigen Untersuchungen mit kontrollierten Malariainfektionen (controlled human malaria infections (CHMI)) von malaria-naiven und semi-immunen Individuen könnte der Einfluss der SelektionsdrĂŒcke des Wirtes auf die var-Gen-Expression und die Rolle der anderen variable OberflĂ€chenprotein bei der Antigenvariation untersucht werden

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Quantum Cloning Machines and the Applications

    Full text link
    No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine etc. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results.Comment: 98 pages, 12 figures, 400+ references. Physics Reports (published online

    Nanopore sequencing and assembly of a human genome with ultra-long reads

    Get PDF
    We report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer. 91.2 Gb of sequence data, representing ~30× theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. De novo assembly of nanopore reads alone yielded a contiguous assembly (NG50 ~3 Mb). Next, we developed a protocol to generate ultra-long reads (N50 > 100kb, up to 882 kb). Incorporating an additional 5×-coverage of these data more than doubled the assembly contiguity (NG50 ~6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8%. Ultra-long reads enabled assembly and phasing of the 4 Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length and closure of gaps in the reference human genome assembly GRCh38

    Understanding the Imprinting Mechanism of UBE3A for Therapeutic Intervention

    Get PDF
    Human chromosome 15q11-q13 contains a cluster of imprinted genes that are associated with a number of neurological disorders that exhibit non-Mendelian patterns of inheritance, such as Angelman syndrome (AS) and Prader-Willi syndrome. Angelman syndrome is caused by the loss-of-expression of maternally inherited ubiquitin E3A protein ligase gene (UBE3A). Prader-Willi syndrome is caused by loss-of-function of paternally inherited SNORD116 snoRNAs (small nucleolar RNAs), which are expressed as part of a long polycistronic transcriptional unit (PTU) comprised of SNURF-SNRPN, additional orphan C/D box snoRNA clusters, and the UBE3A antisense transcript (UBE3A-AS). The full-length transcript of PTU, including UBE3A-AS, is only expressed in neurons causing the imprinting of paternal UBE3A. Why this occurs in only neurons remains largely unknown. Furthermore, this neuron-specific imprinting adds additional difficulty for therapeutic intervention. In this dissertation, the imprinting mechanism of UBE3A is examined in detail, while an alternative high-throughput screening (HTS) method for drug discovery in neurons is developed. A combination of bioinformatic and molecular analysis of the human and mouse PTU revealed that UBE3A-AS/Ube3a-AS is extensively processed via 5’ capping 3’polyadenyation and alternative splicing, suggesting that the antisense may have regulatory functions apart from imprinting UBE3A in neurons. Following this discovery, the transcriptional profiles and processing of mouse paternal Ube3a was investigated as literature suggested that imprinted paternal Ube3a, unlike other imprinted genes, was transcribed up to intron 4. This analysis unveiled a fourth Ube3a isoform that terminates within intron 4. Moreover, expression of this isoform correlated with Ube3a-AS expression, suggesting alternative reasons for the imprinting of Ube3a. In addition to the analysis of the imprinting of Ube3a, an alternative solution for drug discovery for central nervous system disorders was developed and validated. Here, an embryonic stem cell-derived neuronal culture system was developed for HTS and tested using the paternal Ube3a^Y FP reporter cell-line. Using a known reactivator of paternal Ube3a, Topotecan - a topoisomerase inhibitor, as a positive control a proof-of-concept study demonstrated the utility of this method for HTS drug discovery. Collectively, these results advance the field and understanding of antisense lncRNAs and provide a versatile tool for drug discovery for neurological disorders
    • 

    corecore