4,527 research outputs found

    Towards correct-by-construction product variants of a software product line: GFML, a formal language for feature modules

    Full text link
    Software Product Line Engineering (SPLE) is a software engineering paradigm that focuses on reuse and variability. Although feature-oriented programming (FOP) can implement software product line efficiently, we still need a method to generate and prove correctness of all product variants more efficiently and automatically. In this context, we propose to manipulate feature modules which contain three kinds of artifacts: specification, code and correctness proof. We depict a methodology and a platform that help the user to automatically produce correct-by-construction product variants from the related feature modules. As a first step of this project, we begin by proposing a language, GFML, allowing the developer to write such feature modules. This language is designed so that the artifacts can be easily reused and composed. GFML files contain the different artifacts mentioned above.The idea is to compile them into FoCaLiZe, a language for specification, implementation and formal proof with some object-oriented flavor. In this paper, we define and illustrate this language. We also introduce a way to compose the feature modules on some examples.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301

    Automating Deductive Verification for Weak-Memory Programs

    Full text link
    Writing correct programs for weak memory models such as the C11 memory model is challenging because of the weak consistency guarantees these models provide. The first program logics for the verification of such programs have recently been proposed, but their usage has been limited thus far to manual proofs. Automating proofs in these logics via first-order solvers is non-trivial, due to reasoning features such as higher-order assertions, modalities and rich permission resources. In this paper, we provide the first implementation of a weak memory program logic using existing deductive verification tools. We tackle three recent program logics: Relaxed Separation Logic and two forms of Fenced Separation Logic, and show how these can be encoded using the Viper verification infrastructure. In doing so, we illustrate several novel encoding techniques which could be employed for other logics. Our work is implemented, and has been evaluated on examples from existing papers as well as the Facebook open-source Folly library.Comment: Extended version of TACAS 2018 publicatio

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    Exploring annotations for deductive verification

    Get PDF

    StaDy: Deep Integration of Static and Dynamic Analysis in Frama-C

    Get PDF
    We present StaDy, a new integration of the concolic test generator PathCrawler within the software analysis platform Frama- C. When executing a dynamic analysis of a C code, the integrated test generator also exploits its formal specification, written in an executable fragment of the acsl specification language shared with other analyzers of Frama-C. The test generator provides the user with accurate verdicts, that other Frama-C plugins can reuse to improve their own analyses. This tool is designed to be the foundation stone of static and dynamic analysis combinations in the Frama-C platform. Our first experiments confirm the benefits of such a deep integration of static and dynamic analysis within the same platform

    Edit and verify

    Full text link
    Automated theorem provers are used in extended static checking, where they are the performance bottleneck. Extended static checkers are run typically after incremental changes to the code. We propose to exploit this usage pattern to improve performance. We present two approaches of how to do so and a full solution
    corecore