
This is an author version of the contribution published on:

Ferruccio Damiani,Johan Dovland,Einar Broch Johnsen,Ina Schaefer
Verifying traits: an incremental proof system for fine-grained reuse

FORMAL ASPECTS OF COMPUTING (2014) 26
DOI: 10.1007/s00165-013-0278-3

The definitive version is available at:
http://link.springer.com/content/pdf/10.1007/s00165-013-0278-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301904258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://link.springer.com/content/pdf/10.1007/s00165-013-0278-3

Under consideration for publication in Formal Aspects of Computing

Verifying Traits: An Incremental Proof
System for Fine-Grained Reuse †

Ferruccio Damiania and Johan Dovlandb and Einar Broch Johnsenb and Ina Schaeferc

a Università di Torino, Dipartimento di Informatica, Italy
b Department of Informatics, University of Oslo, Norway
c Institute for Software Engineering, Technische Universität Braunschweig, Germany

Abstract. Traits have been proposed as a more flexible mechanism than class inheritance for structuring code in
object-oriented programming, to achieve fine-grained code reuse. A trait originally developed for one purpose can
be adapted and reused in a completely different context. Formalizations of traits have been extensively studied, and
implementations of traits have started to appear in programming languages. So far, work on formally establishing
properties of trait-based programs has mostly concentrated on type systems. This paper presents the first deductive
proof system for a trait-based object-oriented language. If a specification of a trait can be given a priori, covering all
actual usage of that trait, our proof system is modular as each trait is analyzed only once. However, imposing such a
restriction may in many cases unnecessarily limit traits as a mechanism for flexible code reuse. In order to reflect the
flexible reuse potential of traits, our proof system additionally allows new specifications to be added to a trait in an
incremental way which does not violate established proofs. We formalize and show the soundness of the proof system.

Keywords: Traits, Object Orientation, Program Verification, Proof Systems, Incremental Reasoning

1. Introduction

In object-oriented languages with class inheritance, classes traditionally have three competing roles as generators of
objects, as types for objects, and as units of reuse. In contrast, traits are pure units of behavior, designed for flexible,
fine-grained reuse [SDNB03, DNS+06]. A trait contains a set of methods which is completely independent from any
class hierarchy. Thus, the common methods of a set of classes can be factored into a trait. Traits can be composed in
an arbitrary order. The resulting composite unit (which can be a class or another trait) has complete control over the
conflicts which may arise in the composition, and must solve these conflicts explicitly. A trait which was developed
for a particular purpose may later be adapted and reused in a completely different context. This way, traits achieve a
very attractive level of code reuse, but this flexibility can lead to potentially undesired or conflicting program behavior.

† The authors of this paper are listed in alphabetical order. This work has been partially supported by the Deutsche Forschungsgemeinschaft (SCHA
1635/2-1), the Italian MIUR (PRIN 2008 DISCO), the German-Italian University Centre (Vigoni program), and the EU project FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal Models (http://www.hats-project.eu).
Correspondence and offprint requests to: Einar Broch Johnsen, Department of Informatics, University of Oslo, PO Box 1080 Blindern, N-0316
Oslo, Norway. Email: einarj@ifi.uio.no.

2 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

Since their formulation in SMALLTALK-like languages [SDNB03, DNS+06, BDNW08, BDN+09], various formu-
lations of traits have been studied for inheritance-based JAVA-like languages (e.g., [SD05, NDS06, RT07, BDG07,
BDG08, LS08b, LS08a, BDSS10, BDSS13]). The recent programming language FORTRESS [SAC+11] (which has no
class-based inheritance) has a trait construct, while the ‘trait’ construct of SCALA [OSV10] is a form of mixin, i.e.,
a subclass parametrized over its superclass (e.g., [BC90, LM96, FKF98, ALZ03]). Research on ensuring properties of
trait-based programs has so far mostly considered type systems (e.g., [RT06, SD05, RT07, BDG08, LS08a, BCD12,
BDD+10, BDGS13]). These approaches establish that the composed program is type correct; i.e., all required fields
and methods are present with the appropriate types.

This paper presents a deductive proof system for verifying behavioral properties of trait-based programs. Flexible,
fine-grained code reuse motivates the development of traits as a mechanism for code structuring, but this flexibility
poses challenges when developing a corresponding proof system: a high degree of code reuse in a code structuring
mechanism typically limits the degree of reasoning reuse which can be supported by the proof system. Ideally, when
traits are composed into a class, the trait specifications should already provide enough information to ensure that the
interface contracts of that class hold. This scenario would result in a purely compositional proof system in which the
actual usage of a trait always corresponds to its originally intended usage, as captured by its original specification.
These specifications can be established by modular reasoning; i.e., it is sufficient to analyze each trait once during the
verification process. In practice, a priori imposing a fixed specification on a trait may overly restrict the flexibility of
code reuse in that trait, which goes against the original motivation for traits.

The challenge in developing a deductive proof system for trait-based programs is to support the flexibility offered
by traits as a code reuse mechanism, while providing an incremental and compositional reasoning system. Without re-
stricting the flexibility of traits as a code reuse mechanism, a trait cannot be fully verified independently of its context
of composition. In order to align our proof system with this flexibility, traits will be associated with sets of possible
specifications, and the applicable specifications of a trait depend on its context of composition. By incremental rea-
soning, new specifications may be added incrementally to a trait without violating previous specifications and proofs.
When traits are composed, the specifications of the composed traits are selected from the compatible specifications of
the constituent traits. Hence, our proof system subsumes modularity and supports modular reasoning for traits when
applicable, but extends this modularity to incremental reasoning when required for flexible trait reuse. In particular,
the incremental approach supports a gradual extension of existing trait libraries with specifications, driven by the
verification of programs using the library.

In order to focus the paper on the particular challenges proposed by trait-based programs, the proof system is
presented for a kernel of TRAITRECORDJ [BDSS13, Tra11], a trait-based JAVA-like language with a prototype im-
plementation. The proof system presented in this paper can be used to guarantee that programs obtained through the
flexible adaptation and composition of traits satisfy critical requirements, by reasoning modularly and incrementally
about traits, trait adaptation, and composition. The analysis of trait-based programs is formalized as an inference sys-
tem which tracks specification sets for traits, when traits are modified and composed. This inference system adapts
previous work on lazy behavioral subtyping [DJOS10], which developed an incremental inference system for late
bound method calls by separating the required and provided behavior of methods, to trait modification and composi-
tion. The inference system presented in this paper does not depend on a particular program logic. For simplicity, we
use a Hoare-style notation to specify the pre- and postconditions of method definitions in terms of proof outlines and
do not consider, e.g., class or trait invariants. The main approach of our proof system has previously been presented in
a short paper at FTfJP 2011 [DDJS11]. This paper extends [DDJS11] with more examples and explanations, details of
the formalization, and the proofs of the main results. As far as we know, no other deductive proof system for trait-based
languages has been proposed so far.

The paper is structured as follows. Section 2 gives a high-level introduction to our approach to verifying trait-
based programs as an incremental reasoning process. Section 3 introduces the kernel trait language used in this paper
and Section 4 presents a specification notation for traits. Sections 5 and 6 introduce the two aspects of the proposed
proof system for the considered kernel trait language. Section 5 discusses how the proof system is used to verify
basic and composed trait expressions and Section 6 explains how to verify interface contracts for classes. The formal
inference system for program analysis is defined in Section 7, which also shows soundness for the proof system.
Section 8 illustrates by example how the proof system may be used. Related work is discussed in Section 9. Section 10
concludes the paper and discusses future work. The paper includes three appendixes. Appendix A contains technical
definitions omitted in the main paper, Appendix B contains the proofs of the soundness theorem and Appendix C
details the verification of the example from Section 8.

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 3

Trait environment

trait T is
 ...trait T is
 ...trait T is
 ...trait T is
 ...

interface I {
 ...
}
interface I {
 ...
}
interface I {
 ...
}
interface I {
 ...
}

Class environment

class C
 implements I
{ ... }
class C
 implements I
{ ... }
class C
 implements I
{ ... }
class C
 implements I
{ ... }

External
requirementsExternal calls

Internal calls

Trait analysis /
Incremental verification

Modular
verification

Fig. 1. The workflow for verifying trait-based programs, starting by the external requirements imposed on classes by their behavioral interfaces.

2. Verifying Trait-based Programs as an Incremental Reasoning Process

The main goal of the verification process for trait-based programs is to show that the classes that are built from the traits
implement the contracts of their declared interfaces. This section gives an informal introduction to this verification
process, which consists of two parts: trait analysis and class analysis. Section 7 shows that the overall verification
process meets its goal through the soundness of the formalized proof system (Theorem 7.4).

Figure 1 illustrates the envisaged workflow for verifying trait-based programs using our verification process. We
assume given a library of traits, annotated with specifications (possibly without any non-trivial specifications). These
trait specifications are stored in the trait environment. The specifications of a trait contain a pre-/post-condition pair
for each method, denoting the method’s guarantee. This guarantee holds if the other methods called by this method
satisfy certain properties which are contained as requirements in the method specification. While requirements to
external calls can be checked via the behavioral interfaces, the guarantees of internal calls depend on how the traits
are assembled into classes; internal calls are checked with respect to the class environment. During the trait analysis,
the specifications of methods in composed trait expressions are derived from the specifications of methods in the
basic traits, depending on trait modifiers and composition. The specifications of the methods in the basic traits have
to be verified by a suitable proof system before they are stored in the trait environment during the trait analysis. In
this setting, the trait environment plays the role of a cache of already established specifications that can be reused
if applicable during the analysis of classes. For a trait library, the trait environment can be modularly reused and
incrementally extended during the analysis of different programs using the library.

During the class analysis, the verification of a program comprising a set of classes built from traits is driven by
the external requirements to the classes of the program. These external requirements are specified in the behavioral
interfaces which are implemented by the classes of the program. The external requirements to the methods of a class
are decomposed into requirements on methods in trait expressions used to build the class. The class environment
stores the information about the method specifications used to verify the trait expressions in order to retrieve those
when verifying the requirements of other methods. When an external requirement is imposed on a method in a trait
expression during the class analysis, there are three cases:

1. Modular verification: The specifications already contained in the trait environment suffice to prove the external
requirements imposed on the method. We obtain specification reuse by simply showing that the specifications
stored in the trait environment imply the external requirement.

2. Incremental verification: The specifications already contained in the trait environment do not suffice to prove the
external requirements. The user can add new specifications to the traits, which need to be verified. This verification
triggers new trait analysis operations in which external calls are verified based on behavioral interfaces and internal
calls based on methods on other traits. During this verification process, we can return to the modular case in which

4 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

specifications follow from previous specifications or remain in the incremental case which can repeatedly trigger
new trait analysis operations until the analysis is complete.

3. Non-verifiable case: The verification process for the program fails if we cannot find provable specifications to be
added to the trait environment which resolve the external requirements on the classes.

The approach allows program verification to interact with a trait library without assuming that the library already
contains specifications: When verifying the first program built from a set of traits, we can start with an empty trait
environment. The verification process will then enter the incremental case and derive appropriate annotations for
the methods as required by the program and store them in the trait environment. When another program is built by
reusing already verified traits, we can have the modular case such that we are able to reuse the previously established
specifications or again enter the incremental case and derive new specifications. In this way, while verifying a set of
programs, we stepwise obtain all necessary specifications for the traits that are contained. In practice, we expect that
programs will often use a trait in the same way so the potential for specification reuse is good. However, the proposed
approach also caters for programs that use some traits in innovative ways, supporting fine-grained specification reuse.

3. A Kernel Language for Trait-Based Programs

For the purposes of this paper we consider a kernel of the trait-based programming language TRAITRECORDJ [BDSS13,
Tra11] which highlights the specific features of trait-based programming from a reasoning perspective. In particular,
TRAITRECORDJ completely separates the three traditional roles of classes as types, units of code reuse, and object
generators. Interfaces and primitive types are the only source language types; fields and methods are typed by source
language types, and subtyping reflects the extends-relation in interface declarations. Traits only play the role of units of
code reuse and are not types. Class-based inheritance is not present, so classes only play the role of object generators.

A trait in TRAITRECORDJ consists of provided methods, which are the methods defined in the trait; required
methods, which parametrize the behavior of auxiliary methods assumed to be available in a class using the trait; and
required fields, which are similarly assumed to be available in a class using the trait. The required fields of a trait can
be directly accessed in the body of the provided methods of the trait, and the required methods can be called internally
in the trait’s provided methods. Traits are building blocks which can be used to compose classes and other traits by
means of a trait summation operation and a suite of trait alteration operations. Since traits do not introduce any state,
a class assembled from traits has to provide the required fields of its constituent traits. The kernel language represents
a “normal form” syntax which simplifies the analysis proposed in this paper, since it ensures that trait summation
happens as late as possible in a trait composition.

3.1. Kernel Language Syntax

The syntax of the kernel language is given in Figure 2. A program P consists of (lists of) interface declarations
ID, trait declarations TD, and class declarations CD. Following [IPW01] we use the overline notation for (possibly
empty) sequences. In TRAITRECORDJ, interface declarations ID, method headers H, field declarations F, and method
declarations M have a similar syntax as in JAVA (but ignoring, e.g., visibility modifiers and exceptions). For simplicity,
in the kernel language the syntax of methods is restricted. For instance, a method may only contain a single return
statement which must be the last statement in the body of the method, and method parameters are not assignable.
These language features are well-understood from the literature (e.g., [Hoa69, Apt81, AdBO09]) and do not impose
any new difficulties for our proof system. In the sequel, we will use the notation body(M) to denote the body of a
method declaration M. We syntactically distinguish internal method calls m(e) from external method calls v.m(e)
(where the variable v is typed by an interface).

A trait declaration TD binds a trait name T to a trait expression. Traits are either basic or composed. A basic trait
binds a basic trait name Tb to a basic trait expression BTE, whereas a composed trait binds a composed trait name Tc
to a composed trait expression CTE. Only basic traits can be adapted by means of alteration operations, which explains
the normal form restriction of the kernel language, and assembled into composed traits.

A basic trait expression BTE, written {F; H; M}, provides the methods M and declares the types of the required
fields F and methods H (which can be directly accessed in the bodies of the methods M). A trait alteration expression
TAE applies trait alteration operations ao to a basic trait Tb. The operation exclude forms a new trait by removing a
method from an existing trait. The operation aliasAs forms a new trait by giving a new name to an existing method;
in particular, when a recursive method is aliased, its recursive invocation refers to the original method. The operation

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 5

P ::= ID TD CD program

ID ::= interface I extends I { H; } interface declaration
H ::= [S |void] m (S x) method header
S ::= I | boolean | int source language type
F ::= S f field
M ::= H { S x; s; [return e;] } method
s ::= v= rhs | m(e) | v.m(e) | if (e){s;} statement
v ::= f | x variable
rhs ::= m(e) | e.m(e) | new C(e) | e expressions with side effects
e ::= v | this | null | true | false | . . . expressions without side effects

TD ::= trait Tb is BTE basic trait declaration
| trait Tc is CTE composed trait declaration

T ::= Tb | Tc trait names

BTE ::= {F; H; M} basic trait expression
CTE ::= TAE | CTE+CTE composed trait expression

TAE ::= Tb ao trait alteration expression
ao ::= [exclude m] | [m aliasAs m] trait alteration operation

| [f renameTo f] | [m renameTo m]

CD ::= class C implements I by { F; } and CTE class declaration

Fig. 2. Kernel language syntax. The following naming convention is used in the syntax: I∈ interface names; Tb∈ basic trait names; Tc∈ composed
trait names; C ∈ Cid (the class names); f ∈ field names; m ∈Mid (the method names); x ∈ method parameter or local variable names. We further
denote by Mtd the set of method declarations and by Label the set of field and method names.

renameTo creates a new trait by renaming all occurrences of the name of a required field name or of a required or
provided method name from an existing trait. A composed trait expression CTE is either a trait alteration expression
TAE or the sum of two composed trait expressions. The symmetric sum + merges two traits to form a new trait and
requires that the summed traits are disjoint; i.e., the summed traits cannot provide identically named methods but they
may require identically named (and typed) fields or methods.

Classes in TRAITRECORDJ are assembled from a trait expression by providing the fields required by that trait
expression. Thus, a class declaration CD binds a class name C to a set of interfaces I, which specify the possible types
for an instance of the class, fields F, and a trait expression CTE. All fields are private. For simplicity, class constructors
are omitted in the paper; each class C is assumed to have an implicit constructor that behaves like the JAVA constructor
C(S x) { f= x }, where S f are all the fields of the class.

Example 3.1. As a running example in this paper, we consider the implementation of a bank account. The following
trait TAcc provides the basic operations for inserting and withdrawing money:

trait TAcc is { // no required fields
boolean validate(int a); // required method
void update(int y); // required method
void deposit(int x) {update(x);}
void withdraw(int id, int x){

boolean v = validate(id);
if (v) {update(-x);}

}
}

A basic account CAcc may then be defined as follows, where the additional trait TAux defines the auxiliary
methods required by TAcc:

interface IAcc {
void deposit(int x);

6 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

void withdraw(int id, int x);
}

trait TAux is {
int bal; int owner; // required fields
void update(int y) {bal = bal + y;}
boolean validate(int id) {return (id == owner);}

}

class CAcc implements IAcc by {int bal; int owner;} and TAcc + TAux

Since traits define flexible units for code reuse, TAcc may be combined with other traits to define different account
behavior. For example, the class CFeeAcc charges an additional fee whenever the balance is reduced. We define
another interface IFeeAccount in order to be able to associate different behavioral specifications later. The class
CFeeAcc is composed from the traits TAcc, TFee, and TAuxwhere the method update is renamed to basicUpd.

interface IFeeAcc {
void deposit(int x);
void withdraw(int id, int x);

}

trait TFee is {
int fee; int bal; // required fields
void basicUpd(int y); // required method
void update(int y) {

basicUpd(y); if (y<0) {bal = bal - fee;}
}

}

class CFeeAcc implements IFeeAcc
by {int bal; int owner; int fee;}
and TAcc + TFee + (TAux[update renameTo basicUpd])

The public methods of an object are those listed in the interfaces implemented by its class; the other methods and
fields are private to the object. For instance, the only public members of classes CAcc and CFeeAcc are the methods
deposit and withdraw.

3.2. Kernel Language Semantics

The semantics of a class composed from traits is defined through the flattening principle [DNS+06] (see also [NDS06,
LSZ09]), which states that the semantics of a method introduced in a class through a trait should be identical to
the semantics of the same method defined directly within a class. A flattening function defines the semantics of
TRAITRECORDJ by translating TRAITRECORDJ class declarations to JAVA class declarations, and a trait expression
to a sequence of method declarations. TRAITRECORDJ interfaces are literally JAVA interfaces and need no translation.

Let a TRAITRECORDJ program be represented by an interface table IT, a trait table TT, and a class table CT,
which map interface, trait, and class names to interface, trait, and class declarations, respectively. For simplicity, we
assume fixed, global tables IT, TT, and CT. The flattening function J·K, defined in Figure 3, maps a TRAITRECORDJ
class declaration to a JAVA class declaration, and a trait expression to a sequence of method declarations. (The implicit
class constructor of TRAITRECORDJ is unaltered by the flattening function, and omitted in Figure 3.) We denote by
JCDK the flattened version of a class declaration CD, and by JTEK the method declarations which result from flattening
the (basic or composed) trait expression TE.

The flattening function uses some auxiliary functions, which are defined in Figure 4. Given a set M of method
definitions, let m ∈ M denote that m is defined in M, and let M(m) return the definition of m in M. Function rem :
Set[Mtd]×Mid→ Set[Mtd] takes a set of method definitions and a method name m, and returns the set without the
definition of m. Function ren : Mtd×Mid×Mid→ Set[Mtd] performs method renaming. The function rep : Set[Mtd]×
Label×Label→ Set[Mtd] is defined such that:

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 7

Jclass C implements I by { F; } and CTEK , class C implements I { F; JCTEK }

J{F; H; M}K , M
JTK , JTEK if TT(T) = trait T is TE

JCTE1 +CTE2K , JCTE1K · JCTE2K
JTAE[exclude m]K , rem(JTAEK,m)

JTAE[m aliasAs m′]K ,

{
JTAEK · ren(JTAEK(m),m,m′) if m ∈ JTAEK
JTAEK otherwise

JTAE[f renameTo f′]K , rep(JTAEK,f,f′)
JTAE[m renameTo m′]K , rep(JTAEK,m,m′)

Fig. 3. Flattening TRAITRECORDJ to JAVA (where TE denotes either a basic trait expression BTE or a composed trait expression CTE).

rem(/0,m) , /0

rem(I n(I x){t} M,m) ,

{
M if m= n
I n(I x){t} rem(M,m) otherwise

ren(I n(I x){t},m,m′) , I n[m′/m](I x){t}

rep(/0,l,l′) , /0
rep(I n(I x){t} M,l,l′) , I n(I x){t}[l′/l](I x){t[l′/l]} rep(M,l,l′)

Fig. 4. Definitions of auxiliary flattening functions, where: l and l′ range over field and method names; n[l′/l] denotes l′ if n = l′ and l
otherwise; and t[l′/l] denotes the substitution of all occurrences of field l in t by l′ and the substitution of all internal calls of method l in t by
internal calls of method l′.

• if l is a field name, rep(M,l,l′) replaces all occurrences of l in the bodies of the methods M by l′; and
• if l is a method name, rep(M,l,l′) replaces all occurrences of l in the headers of the methods M by l′ and replaces

all the internal calls of l in the bodies of the methods M by internal calls of l′.

Example 3.2. The flattening of the class CFeeAcc, which is introduced in Example 3.1 above, is as follows (the
implicit TRAITRECORDJ constructor is omitted).

class CFeeAcc implements IFeeAcc {
int bal; int owner; int fee;
void deposit(int x) {update(x);}
void withdraw(int id, int x){
boolean v = validate(id); if (v) {update(-x);}

}
void basicUpd(int y) {bal = bal + y;}
boolean validate(int id) {return (id == owner);}
void update(int y) {

basicUpd(y); if (y<0) {bal = bal - fee;}
}

}

Example 3.3. This example illustrates the difference between the aliasAs and rename operations on traits. Con-
sider the following trait TFactorial defining a method factorial that computes the factorial of a natural number
by means of an auxiliary method fAux:

trait TFactorial =
{ int factorial(int n) { int r = -1; if (n >= 0) r = fAux(n); return r; }

int fAux(int n) { int r = 1; if (n >= 2) r = n * fAux(n-1); return r; } }

The flattening of JTFactorial[fAux aliasAs fact]K is the following sequence of three methods (the first two
methods are exactly those provided by the trait TFactorial):

8 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

int factorial(int n) { int r = -1; if (n >= 0) r = fAux(n); return r; }
int fAux(int n) { int r = 1; if (n >= 2) r = n * fAux(n-1); return r; }
int fact(int n) { int r = 1; if (n >= 2) r = n * fAux(n-1); return r; }

while the flattening of JTFactorial[fAux renameTo fact]K is the following sequence of two methods:

int factorial(int n) { int r = -1; if (n >= 0) r = fact(n); return r; }
int fact(int n) { int r = 1; if (n >= 2) r = n * fact(n-1); return r; }

The TRAITRECORDJ type system ensures that the flattening of a well-typed TRAITRECORDJ program is a well-
typed JAVA program. It has been formalized for FEATHERWEIGHT RECORD-TRAIT JAVA (FRTJ) [BDS10, BDS09],
a minimal core calculus for TRAITRECORDJ in the spirit of FEATHERWEIGHT JAVA [IPW01]. A type system for the
kernel language considered in this paper would be a straightforward adaptation of the type system for FRTJ; in the
sequel, it is assumed that programs are well-typed according to such a type system.

4. Specifying Trait-Based Programs

This section considers the specification of trait-based programs. The proof system developed in this paper does not
depend on a particular program logic. Let PL be a (sound) program logic and let a, p,q range over assertions in the
assertion language of PL. For simplicity in the presentation we use Hoare triples {p}s{q} [Hoa69], with a standard
partial correctness semantics [Apt81, AdBO09], adapted to the object-oriented setting; in particular, de Boer’s tech-
nique using sequences in assertions addresses the issue of object creation [dB99]. Thus, the triple {p}s{q} expresses
that if s is executed in a state where the precondition p holds and the execution terminates, then the postcondition
q holds after s has terminated. Let A `PL {p}s{q} denote that {p}s{q} is derivable from a (possibly empty) set of
axioms A using the inference rules of PL. An assertion pair (p,q) is a pair of assertions such that p is a precondition
and q a postcondition (for some sequence of program statements).

Entailment. The standard rule of consequence in Hoare Logic (e.g., [AdBO09]) is insufficient for dealing with sets
of assertion pairs, which we will need to flexibly combine information from assertion pairs. We take a relational
approach to entailment, and let qo denote the assertion q in which all occurrences of fields f and method parameters
x have been substituted by the corresponding fields f o and local variables xo, respectively, avoiding name capture.
The assertion pair (p,q) is understood as an input/output relation ∀z . p⇒ qo, where the formula qo ensures that the
postcondition applies to the values of fields and local variables in the post state, z are the logical variables in p and q,
and the universal quantifier defines the scope of the logical variables (for further details on relational assertions, see
e.g. [BvW98, HLL+12]). The standard entailment relation is lifted to assertion pairs and to sets of assertion pairs, as
follows [DJOS10]:

Definition 4.1 (Entailment). Let (p,q) and (r, t) be assertion pairs and let U and V denote the sets {(pi,qi) |1≤ i≤
n} and {(ri, ti) |1≤ i≤ m}. Entailment is defined over assertion pairs and sets of assertion pairs by

1. (p,q) _ (r, t) , (∀z1 . p⇒ qo)⇒ (∀z2 . r⇒ to),
where z1 and z2 are the logical variables in (p,q) and (r, t), respectively.

2. U _ (r, t) , (
∧

1≤i≤n(∀zi . pi⇒ qo
i))⇒ (∀z . r⇒ to).

3. U _ V ,
∧

1≤i≤m U _ (ri,si).

The relation U _ (r, t) corresponds to classic Hoare style reasoning, proving {r}s{t} from {pi}s{qi} for all
1≤ i≤ n, by means of the consequence and conjunction rules [AdBO09]. When proving entailment, program variables
(input and output) are implicitly universally quantified. Furthermore, entailment is reflexive and transitive, and V ⊆U
implies U _ V .

Behavioral Interfaces and Method Contracts. The (external) behavior of a program can be described in terms of
behavioral interfaces which extend the interfaces of a program with method contracts. A method contract guarantees
that a method has a certain behavior, captured by an assertion pair relating the prestate and the poststate of the method
execution. In addition to describing the relation between the values of the method’s formal parameters and its returned
output value, a method’s effect on the state can be described by means of so-called model variables (e.g., [HLL+12])
in the interface. To avoid representation exposure, a representation function is used to relate the actual fields of a class

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 9

implementing the interface to the model variables of the interface. Logical variables, which are not model variables,
are scoped within an assertion pair so they have the same value in the pre- and postcondition (this scope is formally
captured in Definition 4.1 by quantification). In the syntax, an annotated method header extends a method header H as
defined in Figure 2 with an assertion pair, and an annotated interface declaration extends an interface declaration ID
with contracts for its exported methods. Formally, annotated method headers AH and annotated interface declarations
AID have the syntax

AH ::= H : (a,a)
AID ::= interface I extends I {model: F AH; }

where F are the model variables of the interface. To easily distinguish annotations used for behavioral reasoning from
the code of the program, italics are used for annotations in the examples, for both model variables and assertions.

Example 4.2. To be concrete in the examples, we consider Boolean assertions a in an assertion language defined by

a ::= this | result | null | v | z | op(a).

In this assertion language, this denotes the current object, result the current method’s return value, v a program vari-
able, z a logical variable, and op an operation on data types. In particular, the equality of two assertions a1 and a2 is
denoted a1 == a2. We now extend the interfaces IAcc and IFeeAcc of Example 3.1 with contracts as follows:

interface IAcc {
model: int bal, int owner
void deposit(int x) : (x > 0∧bal == b0,bal = b0 + x);
void withdraw(int id, int x) :

(x > 0∧bal == b0,(id == owner⇒ bal == b0− x)∧ (id 6= owner⇒ bal == b0));
}

interface IFeeAcc {
model: int bal, int owner, int fee
void deposit(int x) : (x > 0∧bal == b0,bal = b0 + x);
void withdraw(int id, int x) :

(x > 0∧bal == b0,(id == owner⇒ bal == b0− x− fee)∧ (id 6= owner⇒ bal == b0));
}

Logical variables are conventionally denoted by subscripts and all formal parameters are read-only. For instance,
the initial value of bal is captured by the logical variable b0 in (bal == b0,bal == b0 + x), and x is the value of the
formal parameter.

Specifying Basic Traits. For a basic trait, a guarantee for the behavior of each provided method is given by an
assertion pair. Since the guarantee of a provided method m may crucially depend on the behavior of the methods called
by m, the guarantee of m has an associated set of requirements on other methods; e.g., the requirement expressed by
n : (r, t) is that the method n must guarantee (r, t). The guarantee (p,q) of a method together with an associated set R
of such requirements constitute a method specification, denoted 〈(p,q),R〉.

Definition 4.3 (Validity of method specifications). A method specification 〈(p,q),R〉 for a method m with body s is
valid if the guarantee for s can be derived from the requirements R in the program logic PL; i.e., R `PL {p}s{q}.

The validity of a specification 〈(p,q),R〉 for a method m can be mechanically checked by providing a proof out-
line [OG76] for the method body of m. A proof outline typically annotates the method body with information which
is difficult to infer but needed for a proof, such as loop invariants and method call annotations. We focus on the latter
here, and assume that method calls in a proof outline for the body of m are annotated with the behavioral requirements
on auxiliary methods which are needed by m to fulfill the guarantee (p,q). If external calls are checked with respect to
their method contracts as given in behavioral interfaces, it is sufficient for the developer to annotate internal calls. Let
reqs(O) denote the set of behavioral requirements to internal method calls in a proof outline O, i.e., each annotated
internal call {r} n {t} in O leads to a requirement n : (r, t) in reqs(O), and let O `PL s : (p,q) denote that O is a valid
proof outline for the method body s with the guarantee (p,q); i.e., O `PL s : (p,q)⇒ reqs(O) `PL {p} s {q}. Generally,
it is easier to (mechanically) check O `PL s : (p,q) than to derive a proof of reqs(O) `PL {p} s {q}.

A trait is designed for flexible reuse. It can be difficult to specify the methods in the trait in a way which covers
all possible future usages of the trait. In practice, there may be many possible guarantees for the provided methods

10 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

of a trait, depending on the context of use. These guarantees can have different associated proof outlines, which give
rise to different requirements on the called methods. Thus, a provided method in a trait can have several specifications
reflecting different usage contexts. The initial specifications reflect the originally intended usage of the method; further
specifications may be added later if new ways of using the trait are discovered. If the initial specification happens to
be sufficient for the later actual usage, this is the special case which coincides with modular specification. In general,
an annotated method associates a list of method specifications to a method declaration and an annotated basic trait
has annotated method declarations for its provided methods. Similarly, an annotated class provides a representation
function rpI for each interface I that it implements, which maps model variables f to assertions over the fields of the
class. Formally, requirements R, specifications sp, annotated methods AM, annotated basic traits ABT, and annotated
classes AC have the syntax

R ::= n : (a,a)
sp ::= 〈(a,a),R〉
AM ::= M sp

ABTE ::= {F;H;AM}
ABT ::= trait Tb is ABTE
AC ::= class C implements I by { rpI F; } and CTE

For ABTE we assume a basic trait declaration {F;H;M} such that each AM in AM extends a method declaration M in
M with specifications. The notation introduced for methods can be extended to annotated methods as follows. For
a set AM of annotated methods, let the function mtds(AM) return the methods defined in AM; i.e., mtds(AM) can be
defined by mtds(/0) , /0 and mtds(M sp AM) , M mtds(AM). Then, m ∈ AM is defined by m ∈ mtds(AM). Let AM(m)
return the annotated definition of m in AM, so AM(m) = AM if m ∈ AM. The body of an annotated method can be
accessed as an unannotated method, body(M sp) = body(M). Furthermore, specs(M sp) , sp. The specification of
methods is illustrated by the following example, where specifications are given in a style similar to JML [BCC+05]
and Fresco [Wil91].

Example 4.4. Consider the withdraw method of trait TAcc in Example 3.1. This method may be given the two
specifications below. For clarity, a specification 〈(p,q),R〉 is here written guar: (p,q) req: R, where the clause req: R
is omitted if there are no requirements. The specifications are labelled w1 and w2.

trait TAcc is { // no required fields
boolean validate(int a); // required method
void update(int y); // required method
void deposit(int x) {update(x);}
void withdraw(int id, int x){
boolean v = validate(id);
if (v) {update(-x);}

}
// w1:
guar: (bal == b0∧ id == owner,bal == b0− x)
req: update : (bal == b0,bal == b0 + y),

validate : (id == owner,result == true)
// w2:
guar: (bal == b0∧ id 6= owner,bal == b0)
req: validate : (id 6= owner,result == false)

}

Trivial specifications are here omitted for brevity; e.g., that bal is not modified by validate. The specifications w1
and w2 are provided under the assumption that the auxiliary calls to update and validate manipulate the fields
bal and owner, which are otherwise not required by the trait. However, they are required by the trait TAux. TAux
may be given the following specifications, which do not lead to any requirements:

trait TAux is {
int bal; int owner; // required fields
void update(int y) {bal = bal + y;}
guar: (bal == b0,bal == b0 + y)

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 11

boolean validate(int id) {return (id == owner);}
guar: (true,result == (id == owner))

}

Specification Entailment. The rule of consequence in Hoare logic [AdBO09] allows us to infer that if {p}s{q}
holds for some statement s and (p,q) _ (p′,q′) then {p′}s{q′}. However, the order of entailment is reversed for
substitutability of assumptions in proof outlines: Given that {p}s1;s2;s3{q} holds for statements s1, s2, and s3 by
assuming {p1}s2{q1}, let (p2,q2) be such that (p2,q2) _ (p1,q1). Then {p}s1;s2;s3{q} must hold by assuming
{p2}s2{q2}. This leads to the following observation about substitutability of decorated method calls in proof outlines:

Observation 4.5. Let s be a statement, and p,q, p1, p2,q1,q2 assertions such that (p2,q2) _ (p1,q1). If A,n() :
(p1,q1) ` {p}s{q} then A,n() : (p2,q2) ` {p}s{q}.

This observation motivates how the entailment relation is lifted to method specifications to express that a specifi-
cation 〈(p2,q2),R2〉 can be derived from a proof of a specification 〈(p1,q1),R1〉.
Definition 4.6 (Specification Entailment). Assume given specifications 〈(p1,q1),R1〉 and 〈(p2,q2),R2〉. Specifica-
tion entailment, denoted 〈(p1,q1),R1〉_ 〈(p2,q2),R2〉, is defined by

〈(p1,q1),R1〉_ 〈(p2,q2),R2〉 , (p1,q1) _ (p2,q2)∧R2 _ R1.

The following lemma shows that specification entailment preserves the validity of specifications.

Lemma 4.7. Let the specifications 〈(p1,q1),R1〉 and 〈(p2,q2),R2〉 be such that 〈(p1,q1),R1〉 _ 〈(p2,q2),R2〉. If
〈(p1,q1),R1〉 is valid for a method m, then 〈(p2,q2),R2〉 is also valid for m.

Proof. Follows from the transitivity of specification entailment.

Assume that the user has supplied 〈(p2,q2),R2〉 as a specification for some statement s. It follows from Lemma 4.7
that to ensure this specification, we may prove a different specification 〈(p1,q1),R1〉with a (possibly) stronger guaran-
tee. Note that the requirement set R2 may contain requirements that are superfluous in order to derive the proof outline
for (p1,q1).

5. Compositional Verification of Traits

The goal of our verification technique is to reason incrementally about trait expressions while verifying trait-based
programs. By incremental, we mean that new specifications may be introduced but that old specifications, and con-
sequently old proofs, are never violated. Due to the flexible reuse potential of traits, we do not assume that a fixed
specification of a trait, given a priori, covers all potential usages of that trait. This would be a special modular case of
our more general incremental approach. Thus, our incremental approach subsumes a modular approach where this is
applicable, but it also supports a gradual introduction of specifications in an existing trait library. Instead, traits have
a set of possible method specifications for each provided method. This set can be incrementally extended. We devise
compositional proof rules that apply to sets of method specifications when traits are composed.

During the verification of trait expressions, a trait environment is constructed to keep track of the specifications for
the provided methods of trait expressions. The trait environment formalizes a “specification cache” for a trait library,
and stores the currently known specifications for methods in a set of traits expressions. The trait environment supports
reasoning reuse for the considered trait library in a modular way, but it may also be extended to support incremental
reasoning when the knows specifications are insufficient. The analysis of a program using the traits of the library
interacts with the trait environment to verify the program. For the analysis, we assume that the interfaces of a program
have been annotated, so every method in an interface has a method contract as defined in Section 4. This allows us
to reason compositionally about calls to methods on interface types. In this section, we examine the construction of
the trait environment during the analysis of basic traits and composite traits assembled using the trait composition and
alteration operations.

Basic Traits. Consider a basic trait T which provides a method m with the method body t and assume an annotated
method declaration M sp〈(p,q),R〉 for m. The correctness of the guarantee (p,q) can be established from the require-
ment set R either by means of automated techniques or by asking the developer for a proof outline O and letting a
verification system verify O `PL t : (p,q). For simplicity we assume in the sequel that it is the developer who provides

12 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

a proof outline O when necessary. In the proof outline, external calls may be analyzed directly, since they are based
on the method contracts in the behavioral interface of the callee. This leaves the requirements to internal calls, which
are provided as annotations in the proof outline. However, the behavior of these internal calls depends on how a class
is finally assembled from trait expressions. Even if the proof outline is valid, it remains to check that the requirements
R are correct when the class is assembled. Therefore, the method specification 〈(p,q),R〉 is stored in the trait environ-
ment for T. A provided method m may have different guarantees depending on different requirements on its internally
called methods. Each of these guarantees is proven using a different proof outline, leading to different specifications
for m. Hence, this analysis is repeated for an annotated method AM until the validity of all specifications has been
checked.

Trait Modifiers. When a trait alteration expression modifies another trait expression TAE, it gets its own specification
stored in the trait environment. This specification is obtained from the specification of TAE and may lead to new proof
obligations. Excluding a method from a trait does not generate any proof obligations. The trait environment of the
resulting trait expression is obtained from the trait environment of the previous trait expression by removing the
method specifications of the removed method. Aliasing does not generate proof obligations. The trait environment for
the resulting trait expression is obtained by copying the method specifications of the aliased method. Renaming of
methods does not generate proof obligations, but proof obligations for distinct methods may now apply to the same
method. The trait environment for the resulting trait expression is obtained by consistently renaming the respective
method. Field renaming does not generate proof obligations, but some specifications may have to be discarded in order
to maintain soundness. Therefore, the trait environment for the trait resulting from the trait alteration [f renameTo f′]
is obtained by distinguishing different cases. If the old field f does not occur in the previous trait expression, the trait
environment for the new trait expression is obtained directly from the trait environment of the old trait expression.
Otherwise, for each method m, we consider whether the new field f′ occurs in the original body of m or not. If f′ occurs
in m, the specifications of m are dropped, which can be illustrated by the triple {b == 5} a = 2∗b {a == 10∧b == 5}.
After [a renameTo b] a direct substitution would yield the invalid triple {b== 5} b= 2∗b {b== 10∧b== 5}. If the
new variable f′ does not occur in the original body of m, specifications containing occurrences of f′ are dropped, which
can be illustrated by the triple {b == 5} a = 0 {b == 5}. This triple is dropped after the renaming [a renameTo b]
since the triple {b == 5} b = 0 {b == 5} is not valid. For the remaining specifications, where f′ does not occur in
the method body or the specification, new specifications are formed directly by renaming f to f′. This discussion
illustrates that field renaming should be used with care in order to avoid unintended name clashes in the program (a
more fine-grained analysis of field renaming may be obtained depending on the expressivity of the program logic PL;
e.g., [PBC06]).

Example 5.1. Let the trait TAux be as specified in Example 4.4, and consider the rename operation TAux[update
renameTo basicUpd]. The implementation of validate is unaltered by the operation, but the updatemethod
is renamed, and the specification given in TAux applies to the new method:

void basicUpd(int y) {bal = bal + y;}
guar: (bal == b0,bal == b0 + y)

Symmetric Sum of Traits. For a composed trait expression CTE obtained from two trait expressions by symmetric
sum, we maintain the distinction that each method specification has particular assumptions on the required methods.
Thus, the trait environment of the composed trait expression is the union of the trait environments of the summand
trait expressions. In particular, method specifications are kept in the trait environment even if their requirements cannot
become satisfied by the implementations found in other trait expressions of the composition. The reason is that the
composed trait expression may be the subject to later trait composition operations. Thus, method specifications that
were unsatisfiable in the original composition may again become satisfiable. However, if the composed trait expression
is used in a class declaration, the analysis of the class ignores method specifications that are unnecessary in order to
verify the interface contract of the class, thereby selecting a set of consistent method specifications from the set of all
provided method specifications from the constituents of the composed trait expression.

6. Verifying Trait-Based Programs

For each class, it is necessary to show that every public method exposed through an interface guarantees the contract
in that interface. This result should eventually follow from the specification of the methods, as provided by the trait

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 13

expression. In the case where the trait specifications contain sufficient guarantees for the public methods, this follows
directly in a modular way. Otherwise, a new method specification with the additional guarantees may be added to
the trait specifications, and method specifications are collected when a class is assembled from the traits by trait
composition. For each added method specification, the respective method must be reinspected to verify the new proof
outline associated with the new specification. Such proof outlines may lead to new requirements on internally called
methods, which again make it necessary to supply new proof outlines for these methods. This procedure repeats for
internal calls until the analysis is complete. Note that all proofs which rely on previously established guarantees of the
provided method remain valid. Thus, the presented approach is incremental.

Example 6.1. Consider the analysis of the class CAcc from Example 3.1, which was implemented by

class CAcc implements IAcc
by {int bal; int owner;} and TAcc + TAux

The class must implement the model variables of the interface by providing a representation function (in the terminol-
ogy of JML [BCC+05]); for simplicity in the examples of this paper, the representation function will always just be the
identity function and we omit its explicit representation. Thus, in order to implement the interface IAcc, the method
withdraw in TAcc must satisfy the following contract given in Example 4.2: (x > 0∧bal == b0,(id == owner⇒
bal == b0− x)∧ (id 6= owner⇒ bal == b0)). Since this contract follows by entailment from the guarantees of w1
and w2 in Example 4.4, it suffices to ensure that the requirements of w1 and w2 are satisfied for the implementations
found in TAux, which is straightforward.

Example 6.2. Consider the analysis of the class CFeeAcc of Example 3.1, which was implemented by

class CFeeAcc implements IFeeAcc
by {int bal; int owner; int fee;}
and TAcc + TFee + TAux[update renameTo basicUpd]

As for CAcc, the representation function here is the identity function, and the contract (x > 0∧ bal == b0,(id ==
owner⇒ bal == b0− x− fee)∧ (id 6= owner⇒ bal == b0)) is imposed by IFeeAcc on the method withdraw.
This contract does not follow from the guarantees of w1 and w2, so a new proof outline is needed. It suffices to extend
the specifications of withdraw with the following specification, labelled w3:

void withdraw(int id, int x) {...}
// w3:
guar: (x > 0∧bal == b0∧ id == owner,bal == b0− x− fee)
req: update : (bal == b0∧ y < 0,bal == b0 + y− fee),

validate : (id == owner,result == true)

The interface contract follows by entailment from the guarantees w2 and w3. Now, the requirements of these spec-
ifications need to be verified. The only non-trivial requirement is the one to update, which can be verified by the
following specification in TFee:

trait TFee is {...
void update(int y) {...}
guar: (y < 0∧bal = b0,bal = b0 + y− fee)
req: basicUpd : (bal = b0,bal = b0 + y)

}

The requirement of this specification follows from the guarantee of basicUpd as given in Example 5.1.

Example 6.3. Assume that the trait TAcc is specified as in Example 4.4. We define trait TMini by

trait TMini is {
int bal; // required field
void update(int y) {bal=bal+y;}
void validate(int id) {return true;}

}

Assume that class CMini is defined by TAcc+TMiniwhere bal is the only declared field. The original specifications
w1 and w2 contain the field owner, reflecting that TAcc was originally developed together with TAux, but this field
is not present in the current composition. To analyze method withdraw, we may provide the following specification:

14 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

void withdraw(int id, int x) {...}
// w4:
guar: (bal == b0,bal == b0− x)
req: update : (bal == b0,bal == b0− x)

validate : (true,result == true)

This specification expresses that any client can make a withdrawal from a CMiniAcc.

7. PST(PL): A Proof System for Verifying Trait-Based Programs

The verification process for trait-based programs outlined in the previous sections is now formalized as a calculus
PST(PL) which is parametric in the underlying program logic PL. The calculus PST(PL) relies on a sound program
logic PL and defines inference rules for analyzing trait expressions and classes, given in Sections 7.2 and 7.3 below.
The proof system considers annotated basic traits ABT. For simplicity, we assume that unannotated method declara-
tions in AM have a default guarantee (true, true), with corresponding requirements (true, true) for internal calls.

A program is analyzed in PST(PL) as a sequence of analysis operations concerning the trait and class definitions
of the program. These operations manipulate a proof environment which consists of a trait environment and a class
environment. For each analyzed trait alteration expression, the trait environment is extended with the trait definition
and with the specifications for the methods provided by that trait expression. Thus, if the analysis of a trait expression
TAE is initiated in some trait environment T , the successful analysis of TAE will lead to a trait environment T ′, such
that T ′ extends T . In this case we say that T ′ is the trait environment resulting from the analysis. When analyzing
classes, the class environment is extended similarly. Traits and classes are analyzed in the context of the trait and
class environments which have been obtained from the analysis of previous traits and classes. In this way, the rules of
PST(PL) explain how the analysis of language artefacts constructs a sequence of proof environments, starting with
empty trait and class environments. This process formalizes the accumulation of specifications for a collection of traits
during the analysis of programs using those traits.

7.1. Judgments in PST(PL)

Judgments in PST(PL) are of the form C ,T `P , where C is a class environment for class analysis, T is a trait
environment for trait analysis, and P is a sequence of analysis operations. We define the syntax for judgments in
PST(PL), including the analysis operations and the proof environment which is manipulated by these operations.

7.1.1. Proof Environments

Class environments are used to accumulate knowledge about classes during the analysis. Class environments, which
represent classes by a unique name and a tuple 〈I,CTE,F〉 of type Class, are defined as follows:

Definition 7.1 (Class environments). A class environment C consists of two mappings DC and SC , where DC :
Cid 7→ Class, and SC : Cid×Mid 7→ Set[Spec].

Here, DC contains the definitions of verified classes and SC contains their verified specifications. The main purpose
of the class environment is to record the method specifications used to establish the contracts of the implemented
interfaces. The function impl : Class→ CTE returns the trait expression of a class. Update functions for the class
environment C are defined as follows, where sp is a set of method specifications:

C ⊕ (C,I,CTE,rpI ,F) , 〈DC [C 7→ 〈I,CTE,rpI ,F〉],SC 〉
C ⊕ (C,m,sp) , 〈DC ,SC [(C,m) 7→ SC (C,m)∪sp]〉

Trait environments are used to accumulate knowledge about trait expressions during analysis, and are defined as
follows:

Definition 7.2 (Trait environments). A trait environment T is a mapping from trait alteration expressions to anno-
tated basic traits: T : TAE→ ABTE.

Recall that trait alteration expressions TAE are defined by Tb ao; i.e., they consist of a basic trait name followed by a
possibly empty sequence of alteration operations. The mapping T takes such a trait alteration expression and returns

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 15

P ::= trait T is {F;H;AM} | trait T is CTE | verify(T,AM) | extend(CTE)
| class C implements I by { rpI F; } and CTE | 〈C : O〉 |P ·P

O ::= ε | discharge(R) | analyze(TAE,m : (a,a)) |O ·O

Fig. 5. Syntax of the analysis operations.

the annotated implementation of the trait as a basic trait expression. In this manner, the trait environment is used to
capture the provided methods of the different traits and to associate a number of specifications with each method.

Auxiliary functions on trait environments. For a trait alteration expression TAE, we let TAE ∈ T denote that TAE
is in the domain of T , so T (TAE) is defined. For T (TAE) = {F;H;AM} we lift functions over annotated method
sets such that m ∈ T (TAE), m ∈ AM, T (TAE)(m), AM(m), and mtds(T (TAE)), mtds(AM). For a composed trait
expression CTE defined by TAE1 + . . .+TAEn where each TAEi ∈ T , we define mtds(CTE) straightforwardly by the
union ∪1≤i≤n mtds(T (TAEi)). By type safety, we may assume that name conflicts do not occur in the symmetric sum;
i.e., each method in a sum of trait expressions is defined in exactly one summand TAEi. Let the function addSpec be
defined such that addSpec(AM,m,sp) returns AMwhere AM(m) is extended by sp, and let addSpec({F;H;AM},m,sp),
{F;H;addSpec(AM,m,sp)}.

The update function ⊕ is used to extend environments with new definitions and specifications during the analysis.
Let T be the name of a basic trait defined by {F;H;AM}, m a method name, and 〈(p,q),R〉 a specification. A trait
environment T is extended with new basic traits and specifications as follows:

T ⊕ (T,{F;H;AM}) , T [T 7→ {F;H;AM}]
T ⊕ (T,m,sp) , T [T 7→ addSpec(T (T),m,sp)]

7.1.2. Analysis operations

The analysis assumes that basic traits are annotated as explained in Section 4. The syntax for the analysis operations
P is given in Figure 5. Analysis operations include user-given trait and class definitions, in addition to verify(T,AM),
extend(CTE), and 〈C : O〉. The operation verify(T,AM) applies to a trait T, where AM is a set of methods annotated
with specifications to be verified for the trait. For a composed trait expression CTE, the operation extend(CTE) is
used to construct an entry in the trait environment for each trait alteration expression in CTE. Finally, operation
〈C : O〉 encapsulates the operations O , ensuring that they are analyzed within the context of a specific class C. Each
element in O is either a discharge(R) operation, which indicates that the requirement set R must be verified for C,
or an analyze(TAE,n : (r,s)) operation, which indicates that the requirement n : (r,s) must be further analyzed in the
context of class C, where the definition of n stems from the trait expression TAE.

7.2. Trait Analysis in PST(PL)

The inference rules for trait analysis are given in Figure 6. Traits are analyzed compositionally in the context of the
trait environment T . A trait is either an annotated basic trait of the form trait Tb is {F;H;AM} or a composed trait
of the form trait Tc is CTE. For an annotated basic trait {F;H;AM} we assume by type safety that F and H contain
all fields and method signatures used in the provided methods. Furthermore, we assume for simplicity that F and H are
minimal in the sense that they do not contain field and method signatures that are not used in the provided methods.

An annotated basic trait trait Tb is {F;H;AM} is analyzed by the rule BASICTRAIT, which extends T with
the definition of the trait and generates a verify operation for analyzing the user-given specifications for the provided
methods of the trait. The verify operation on a set AM of annotated methods is decomposed by the rules DECOMP1
and DECOMP2, which leads to a verify(Tb,M sp) operation for each specification sp of Min AM. The predicates
nonempty(AMi) and nonempty(spi) (for i ∈ {1,2}) express that decomposition rules only apply to nonempty se-
quences. The rule ADAPTATION builds specification entailment into the proof system. This rule replaces the user-
provided specification by a stronger specification. For a method I m(I x){t} with the specification 〈(p,q),R〉, the rule
VERIFY requires that the user provides a proof outline O for the method body t such that O `PL t : (p,q) (for example
by the user, as discussed in Section 5). In this case 〈(p,q),reqs(O)〉 is a valid method specification for m, and the
annotated method T (Tb)(m) in the trait environment is extended with this specification.

Upon the successful analysis of Tb, each specification is recorded by the trait environment T . Note that when

16 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

(BASICTRAIT)

Tb /∈T C ,T ⊕ (Tb,{F;H;AM}) ` verify(Tb,AM) ·P
C ,T ` trait Tb is {F;H;AM} ·P

(DECOMP1)

nonempty(AM1) nonempty(AM2)
C ,T ` verify(T,AM1) · verify(T,AM2) ·P

C ,T ` verify(T,AM1 AM2) ·P

(DECOMP2)

nonempty(sp1) nonempty(sp2)
C ,T ` verify(T,M sp1) · verify(T,M sp2) ·P

C ,T ` verify(T,M sp1 sp2) ·P
(ADAPTATION)

〈(p′,q′),R′〉_ 〈(p,q),R〉 C ,T ` verify(T,M〈(p′,q′),R′〉) ·P
C ,T ` verify(T,M〈(p,q),R〉) ·P

(VERIFY)

O `PL t : (p,q) reqs(O) = R C ,T ⊕ (T,m,〈(p,q),R〉) `P
C ,T ` verify(T,I m(I x){t}〈(p,q),R〉) ·P

(COMPTRAIT)

C ,T ` extend(CTE) ·P
C ,T ` trait Tc is CTE ·P

(DECOMP3)

C ,T ` extend(TAE) · extend(CTE) ·P
C ,T ` extend(TAE+CTE) ·P

(LOOKUP)

TAE ∈T C ,T `P
C ,T ` extend(TAE) ·P

(EXTEND)

TAE ∈T TAE ao /∈T C ,T ⊕ (TAE,ao) `P
C ,T ` extend(TAE ao) ·P

(EXTENDREC)

TAE /∈T C ,T ` extend(TAE) · extend(TAE ao) ·P
C ,T ` extend(TAE ao) ·P

Fig. 6. The inference rules for trait analysis.

the trait is defined it is not known to which actual implementation an internal call will be bound, since the method
binding depends on how the traits are used to form classes. Consequently, the imposed requirements are not verified
with regard to any implementation during trait analysis. Instead these requirements are verified as needed when a
specification is actually used during the analysis of a class.

Composed traits trait Tc is CTE are analyzed by the rule COMPTRAIT. Here CTE is of the form TAE1 +
. . .+TAEn for n ≥ 1, where each TAEi is of the form Tbi aoi. For simplicity, we here assume that all basic traits
Tb1, . . . ,Tbn have been analyzed before the analysis of composite trait expressions. By the rule COMPTRAIT, an
operation extend is generated in order to extend the trait environment for each trait alteration expression TAEi in the
composition. The composed trait expression is decomposed to a sequence of extend operations by the rule DECOMP3.
Rule LOOKUP applies to TAEi if TAEi is already defined in the trait environment. Especially, this rule applies to all
basic trait names used in the composition. Otherwise, the analysis depends on the structure of TAEi, and the extend
operation is analyzed by either EXTEND or EXTENDREC.

Rule EXTEND is the main rule for extending the trait environment for each TAEi of the form TAE ao. The premise
of the rule ensures that the prefix TAE is defined in the trait environment. The trait environment is extended for TAE ao
by the update T ⊕(TAE,ao), which modifies a copy of the annotated basic trait bound to TAE depending on the actual
alteration operation ao. The definition of this update function is given in Appendix A. For an expression TAE ao
where TAE has not already been analyzed (i.e., TAE is not in T), the rule EXTENDREC recursively ensures that the
trait environment is extended for TAE before it is extended for TAE ao. After extending the trait environment for TAE,
the rule EXTEND may be applied to extend(TAE ao). Since TAE starts with a basic trait name Tb, the recursion over
the structure of TAE ao is guaranteed to terminate. In this manner, properties for each TAEi in the composition are
remembered in the trait environment. By the successful analysis of Tc, the mapping T binds TAEi to an annotated
basic trait definition containing the methods provided by TAEi with verified specifications. These annotated methods
are derived by manipulating those of Tbi according to the modifiers aoi.

A trait alteration expression TAE is introduced into T by rule BASICTRAIT or rule EXTEND. After the initial
analysis by one of these rules, the method definitions in TAE are not manipulated, but specifications may be added.

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 17

(CLASS)

C ⊕ (C,I,CTE,rpI ,F),T ` extend(CTE) · 〈C : discharge(contracts(rpI ,I))〉 ·P
C ,T ` class C implements I by { rpI F; } and CTE ·P

(DECOMP4)

C ,T ` 〈C : discharge(R1) ·discharge(R2) ·O〉 ·P
C ,T ` 〈C : discharge(R1∪R2) ·O〉 ·P

(OPENANALYSIS)

TAE ∈ impl(DC (C)) m ∈T (TAE) C ,T ` 〈C : analyze(TAE,m : (p,q)) ·O〉 ·P
C ,T ` 〈C : discharge(m : (p,q)) ·O〉 ·P

(CLOSEANALYSIS)

guar(SC (C,m)) _ (p,q) C ,T ` 〈C : O〉 ·P
C ,T ` 〈C : discharge(m : (p,q)) ·O〉 ·P

(ANALYZE)

sp⊆ specs(T (TAE)(m)) guar(sp) _ (p,q) C ⊕ (C,m,sp),T ` 〈C : discharge(req(sp)) ·O〉 ·P
C ,T ` 〈C : analyze(TAE,m : (p,q)) ·O〉 ·P

(INCREMENT)

C ,T ` verify(TAE,T (TAE)(m)〈(p,q),R〉) · 〈C : analyze(TAE,m : (p,q)) ·O〉 ·P
C ,T ` 〈C : analyze(TAE,m : (p,q)) ·O〉 ·P

(EMPDISCHARGE)

C ,T ` 〈C : O〉P
C ,T ` 〈C : discharge(/0) ·O〉 ·P

(EMPCLASS)

C ,T `P
C ,T ` 〈C : ε〉 ·P

Fig. 7. The inference rules for class analysis. Here, TAE ∈ CTE denotes that TAE is a syntactical part of CTE, i.e., if CTE is TAE1 + . . .+TAEn,
then TAE= TAEi for some i (1≤ i≤ n).

The inference system for trait analysis ensures that there exists a valid proof outline for each specification recorded by
the trait environment. (This is formalized by Lemma B.2 in Appendix B.) Especially, the analysis ensures that each
user given specification in a basic trait is valid.

7.3. Class Analysis in PST(PL)

We now consider the analysis of a class declaration class C implements I by { rpI F; } and CTE. As for com-
posed traits, the expression CTE is of the form TAE1 + . . .+TAEn and by type safety we have that each provided
method m is defined in exactly one of the summand trait expressions TAEi. In addition to the trait environment T , the
class analysis extends a class environment C which contains the definitions and specifications of classes. The analysis
of class C is driven by the contracts of its interfaces I. Upon the successful analysis of C, each contract of a provided
method m in the interfaces of the class follows by entailment from the guarantees of SC (C,m). If m is provided by TAEi,
the interface contracts are ensured by reusing already verified specifications contained in T (TAEi)(m), and by extend-
ing this set if needed. Thus, SC (C,m) contains the subset of T (TAEi)(m) that is actually used to verify the current
class. In addition, the requirements imposed by the used specifications are analyzed with regard to the implementation
to which they bind in C. For a method specification sp= 〈(p,q),R〉, we define the functions guar : Spec→ Guar and
req : Spec→ Set[Req] where guar(sp), (p,q) and req(sp), R. These functions are straightforwardly lifted to sets
of method specifications, returning sets of guarantees and requirements, respectively. Thus, if sp ∈ SC (C,m), then
each requirement n : (r,s) ∈ req(sp) follows by entailment from the guarantees of SC (C,n).

Let contracts(rpI ,I) denote the set of method contracts of I obtained by applying the respective representation
functions rpI to the model variables in the assertions of each interface, which are of the form m : (p,q). The analysis
of the class C is initiated by the rule CLASS. By this rule, the class environment C is extended by the definition of C,
and the analysis operation 〈C : discharge(contracts(rpI ,I))〉 is generated. This operation reflects that the analysis of C

18 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

is driven by the contracts of the implemented interfaces, in which the model fields of the contracts have been adapted
to the class by application of its representation function for each interface, and that these contracts are analyzed in the
context of C. The set of method contracts is decomposed by the rule DECOMP4, and each contract m : (p,q) is analyzed
either by rule OPENANALYSIS or CLOSEANALYSIS. The rule CLOSEANALYSIS applies to a discharge operation if
the requirement follows from earlier verified specifications for the current class. Otherwise, the requirement is opened
for analysis at the trait level by rule OPENANALYSIS. This rule selects the conjunct TAE in CTE where m is defined,
leading to an operation analyze(TAE,m : (p,q)). This operation is analyzed by rule ANALYZE.

Rule ANALYZE captures modular reasoning in the inference system, reusing previous analysis from the trait
environment. This rule applies when the contract can be derived from previously verified method specifications for m
in TAE. In that case, the analysis continues with an discharge operation for the requirements of these specifications,
which are analyzed in the same manner as the original interface contract. Consequently, each requirement is either
discharged by CLOSEANALYSIS, or analyzed using OPENANALYSIS with respect to the actual implementation of the
called method in the current trait composition CTE.

The rule INCREMENT captures incremental reasoning in the inference system and allows the user to extend the
verified specifications of a trait in the trait environment, incrementally building knowledge about the traits. It needs
to be applied if the requirement of an analyze operation does not follow from previously verified specifications of
the current trait. The user must suggest the additional specification 〈(p,q),R〉 for the trait, which is analyzed by a
verify operation for the current trait. This verify operation is resolved by the inference rules for trait analysis and
the trait environment is extended before the class analysis proceeds. To cover the case of self-recursion, the method
specification itself is assumed when analyzing the requirements, similar to rule BASICTRAIT above. This captures the
standard approach to reasoning about recursive method calls [Hoa71]. An empty set of requirements or contracts is
discarded by the rule EMPDISCHARGE, and the successful analysis of class C is completed by the rule EMPCLASS.

7.4. Soundness of PST(PL)

When reasoning about a set of mutually recursive methods, the guarantees in the specifications of all methods are
assumed to hold in order to verify the body of each method (e.g., [AdBO09]). We now extend this approach to define
the consistency of a set of proof outlines for methods in a flattened class with given interfaces. The flattened version of a
class that is defined by class C implements Iby { rpI ,F; }andCTE is given by classCimplementsI { rpI ,F; M }
as defined in Section 3.1 (where the annotation with representation functions is unchanged by the flattening).

Definition 7.3 (Consistency). Consider a flattened class class C implements I { rpI ,F; M }. For each method
m ∈ M with method body t, let Sm be a set of method specifications such that for each 〈(p,q),R〉 ∈ Sm, there exists a
proof outline O where O `PL t : (p,q) and R= reqs(O). The specifications SM are consistent iff, for all m ∈ M:

1. ∀(m : (r,s)) ∈ contracts(rpI ,I) . guar(Sm) _ (r,s)
2. ∀〈(p,q),R〉 ∈ Sm . ∀(n : (r,s)) ∈ R . guar(Sn) _ (r,s)

The first condition expresses that the interface contracts are satisfied, whereas the second condition expresses that
the requirements of all internal calls are satisfied. Previous work [DJOS10] defines a sound calculus for analyzing
single inheritance class hierarchies. Given a consistent set of specifications, the analysis of a flattened class succeeds
in this calculus. In order to ensure soundness of PST(PL), it thereby suffices to prove that the successful analysis of
some class C leads to a consistent set of specifications for the flattened version of C.

Theorem 7.4 (Soundness of Trait Verification). For a given class class C implements I by { F; } and CTE,
if the successful analysis of C in PST(PL) results in a class environment C , then the set of method specifications for
C in C are consistent with the flattened version of C.

The proof of this theorem is given in Appendix B.

8. Example: A Trait-Based Implementation of Bank Accounts

This section illustrates how traits can be used to construct a range of classes implementing behavioral interfaces which
specify different bank accounts, and how these classes can be verified by means of the proposed incremental proof
system. We start with the trait definitions given in Figure 8, where each trait contains a set of annotated methods. To

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 19

trait TBasicAccount is {
int bal; // required field
void update(nat x); // required method
void deposit(nat x) {bal=bal+x;} 〈(bal == b0,bal == b0 + x), /0〉
void withdraw(nat x) {update(x);}

}

trait TBasicUpd is {
int bal; // required field, no required methods
void update(nat x) {bal=bal-x;} 〈(bal == b0,bal == b0− x), /0〉

}

trait TFeeUpd is {
nat fee; // required field
void bUpdate(nat x); // required method
void update(nat x) {bUpdate(x+fee)}

}

trait TPosUpd is {
int bal; // required field
void bUpdate(nat x); // required method
void update(nat x) {if (bal >= x) {bUpdate(x);}}

}

Fig. 8. Basic trait definitions for implementing bank accounts.

simplify the presentation, we assume that the language provides the type nat of positive integers. Default specifica-
tions, with guarantees (true, true), are omitted. Let us assume that only a few specifications are initially provided in
the traits. The incremental aspect of PST(PL) is used to provide additional specifications to the traits when these are
required by the class analysis.

The trait TBasicAccount implements basic functionality for bank accounts by the two methods deposit and
withdraw; the method deposit increases the balance bal of the account by the parameter value and withdraw
decreases the balance of the account by calling an auxiliary method update. The exact definition of update depends
on the specific account, so update is a required method in this trait. Additionally, deposit assumes access to a field
bal, so bal is also required by the trait. To implement an account, the trait TBasicAccount must be composed
with another trait where update is defined, in a class where bal is defined.

The trait TBasicUpd provides a basic implementation of the update method which simply reduces the balance
by the argument value. In contrast, the trait TFeeUpd charges a fee for each update, and update is defined by calling
an auxiliary, required method bUpdate where the argument is increased by fee. In a similar way, the trait TPosUpd
calls an auxiliary, required method bUpdate. However, in this case the required method in TPosUpd is only called
if the current balance is greater or equal to the parameter value.

Bank accounts with different behavioral properties may be assembled, depending on how the traits of Figure 8 are
combined. Different trait combinations lead to different behaviors for the withdraw method. These bank accounts
are first specified in terms of behavioral interfaces and then implemented in classes using different trait combinations.
We define an interface hierarchy such that each type of account extends a superinterface IAccount which declares
the methods deposit and withdraw, but where withdraw has no behavioral requirement. This interface further
specifies the effect of making a deposit as increasing the balance of the bank account by the deposited amount. The
subinterfaces vary in the properties they specify for withdraw. In the interface IBasicAccount, withdraw
decreases the balance of the bank account by exactly the withdrawn amount; in IFeeAccount the balance is de-
creased by a fee on withdrawals; in IPosAccount the account cannot be overdrawn; in IPosFeeAccount a
fee is charged on withdrawal and the withdrawn amount cannot be larger than the balance on the account; and in
IFeePosAccount, a fee is charged on withdrawals and the balance is guaranteed not to be overdrawn. The defi-
nitions of these interfaces are given in Figure 9; observe that the method deposit is only specified in IAccount
whereas withdraw is given different specifications in the different subinterfaces of IAccount.

The interfaces are implemented by classes, shown in Figure 10, which combine TBasicAccount with other

20 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

interface IAccount {
model: int bal
void deposit(nat x) : (bal == b0,bal == b0 + x)
void withdraw(nat x) // no behavioral requirement

}

interface IBasicAccount extends IAccount {
model: int bal
void withdraw(nat x) : (bal == b0,bal == b0− x)

}

interface IFeeAccount extends IAccount {
model: int bal, int fee
void withdraw(nat x) : (bal == b0,bal == b0− x− fee)

}

interface IPosAccount extends IAccount {
model: int bal
void withdraw(nat x) :
(bal == b0,(b0 ≥ x⇒ bal == b0− x)∧ (b0 < x⇒ bal == b0)),
(bal≥ 0,bal≥ 0)

}

interface IPosFeeAccount extends IAccount {
model: int bal, int fee
void withdraw(nat x) :

(bal == b0,(b0 ≥ x⇒ bal == b0− x− fee)∧ (b0 < x⇒ bal == b0))
(bal≥ 0,bal≥−fee)

}

interface IFeePosAccount extends IAccount {
model: int bal, int fee
void withdraw(nat x) :

(bal == b0,(b0 ≥ (x+ fee)⇒ bal == b0− x− fee)∧ (b0 < (x+ fee)⇒ bal == b0))
(bal≥ 0,bal≥ 0)

}

Fig. 9. Interface declarations for different bank accounts.

traits in different ways. The update method is renamed in some of the traits such that the call to update in
withdraw may lead to a chain of calls to renamed update methods. The class CBasicAccount is defined in
terms of the basic update method. The class CFeeAccount combines the basic update method with the one
from TFeeUpd, so the balance is reduced by an additional fee for each withdrawal. For comparison, the flattened
version of this class is shown in Figure 11. The class CPosAccount is defined in a similar way, but the update is not
performed if it would lead to a negative balance. The classes CPosFeeAccount and CFeePosAccount, combine
all the traits TFeeUpd, TPosUpd, and TBasicUpd. Here, the names reflect the binding order of a call to update.
In CPosFeeAccount, a call to update will bind to the implementation found in TPosUpd and a recursive call to
the implementation in TFeeUpd. Thus, in CPosFeeAccount the balance must be positive before the fee is added to
the argument. This means that−fee is the lower limit of the balance, as specified by the interface IPosFeeAccount.
In contrast, the traits of CFeePosAccount are ordered such that the fee is added to the argument before the positive
balance test. In this way, CFeePosAccount ensures that the balance is non-negative after a call to update. The
verification of these classes with respect to their interfaces is discussed in Appendix C.

Figure 12 summarizes the environments C ,T resulting from the analysis of the different classes, focussing on the
method withdraw. We assume that classes are analyzed in the top-down order in which they appear in the table, after
the analysis of the basic trait definitions in Figure 8. Thus, the analysis is assumed to start in some initial environments

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 21

class CBasicAccount implements IBasicAccount
by {int bal;} and TBasicAccount + TBasicUpd

class CFeeAccount implements IFeeAccount
by {int bal, nat fee;}
and TBasicAccount + TFeeUpd + TBasicUpd[update renameTo bUpdate]

class CPosAccount implements IPosAccount
by {int bal}
and TBasicAccount + TPosUpd + TBasicUpd[update renameTo bUpdate]

class CPosFeeAccount implements IPosFeeAccount
by {int bal, nat fee;}
and TBasicAccount + TPosUpd + TBasicUpd[update renameTo bbUpdate]

+ TFeeUpd[bUpdate renameTo bbUpdate][update renameTo bUpdate]

class CFeePosAccount implements IFeePosAccount
by {int bal, nat fee;}
and TBasicAccount + TFeeUpd + TBasicUpd[update renameTo bbUpdate]

+ TPosUpd[bUpdate renameTo bbUpdate][update renameTo bUpdate]

Fig. 10. Class definitions for the different bank accounts.

class CFeeAccount implements IFeeAccount {
int bal, nat fee;
void deposit (nat x) {bal=bal+x;}
void withdraw(nat x) {update(x);}
void update (nat x) {bUpdate(x+fee);}
void bUpdate (nat x) {bal=bal-x;}

}

Fig. 11. The flattened version of class CFeeAccount.

C0 and T0 where C0 is empty and where each basic trait is bound to an annotated basic trait expression in T0,
corresponding to the definition found in Figure 8. The environment T0 is further detailed in Appendix C. Figure 12
shows the valid specifications for the methods in the classes CFeeAccount, CBasicAccount, CPosAccount,
CPosFeeAccount, and CFeePosAccount. Furthermore, the trait in which the method is defined is indicated
in the column Trait, and the column labelled PO indicates whether a new specification for the trait was needed to
make the proof go through. Thus, if C and T are the class and trait environments resulting from the class analysis, a
row C m sp TAE in the table means that sp ∈ SC (C,m) and sp ∈ specs(T (TAE)(m)), and an ∗ indicates that a new
specification for the method was provided during the analysis of C.

The specifications for each class in Figure 12 are consistent: Each internal call requirement follows from the
guarantee of the called method, and each method contract in the interface follows from the corresponding guaran-
tee in the class. If an interface has two contracts for withdraw, both are entailed by the verified specification.
Note that the number of user-supplied specifications may be reduced by introducing uninterpreted boolean asser-
tions in specifications (see [DDJ+12]). For instance, withdraw in TBasicAccount could then be specified by
〈(p,q),update : (p,q)〉 for some p and q, which means that it would suffice to provide only one proof outline for
this method.

9. Related Work

This section relates the presented work on a proof system for a trait-based object-oriented language to related work on
proof systems for object-oriented programming languages. We refer to [BDSS13] for an in-depth discussion of traits

22 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

Class Method Valid specifications Trait PO
CFeeAccount withdraw 〈(bal == b0,bal == b0− x− fee),

update : (bal == b0,bal == b0− x− fee)〉 TBasicAccount ∗
update 〈(bal == b0,bal == b0− x− fee)

bUpdate : (bal == b0,bal == b0− x)〉 TFeeUpd ∗
bUpdate 〈(bal == b0,bal == b0− x), /0〉 TBasicUpd[bU]

CBasicAccount withdraw 〈(bal == b0,bal == b0− x),update : (bal == b0,bal == b0− x)〉 TBasicAccount ∗
update 〈(bal == b0,bal == b0− x), /0〉 TBasicUpd

CPosAccount withdraw 〈(bal == b0, (b0 ≥ x⇒ bal == b0− x)∧ (b0 < x⇒ bal == b0)),
update : (bal == b0,(b0 ≥ x⇒ bal == b0− x) ∧

(b0 < x⇒ bal == b0))〉 TBasicAccount ∗
update 〈(bal == b0, b0 ≥ x⇒ bal == b0− x)∧ (b0 < x⇒ bal == b0)),

bUpdate : (bal == b0,bal == b0− x)〉 TPosAccount ∗
bUpdate 〈(bal == b0,bal == b0− x), /0〉 TBasicUpd[bU]

CPosFeeAccount withdraw 〈(bal == b0, (b0 ≥ x⇒ bal == b0− x− fee) ∧
(b0 < x⇒ bal == b0)),

update : (bal == b0,(b0 ≥ x⇒ bal == b0− x− fee)∧
(b0 < x⇒ bal == b0))〉 TBasicAccount ∗

update 〈(bal == b0, (b0 ≥ x⇒ bal == b0− x− fee) ∧
(b0 < x⇒ bal == b0)),

bUpdate : (bal == b0,bal == b0− x− fee)〉 TPosAccount ∗
bUpdate 〈(bal == b0,bal == b0− x− fee),

bbUpdate : (bal == b0,bal == b0− x)〉 TFeeUpd[bbU]
bbUpdate 〈(bal == b0,bal == b0− x), /0〉 TBasicUpd[bbU]

CFeePosAccount withdraw 〈(bal == b0, (b0 ≥ (x+ fee)⇒ bal == b0− x− fee) ∧
(b0 < (x+ fee)⇒ bal == b0)),

update : (bal == b0,(b0 ≥ (x+ fee)⇒ bal == b0− x− fee) ∧
(b0 < (x+ fee)⇒ bal == b0))〉 TBasicAccount ∗

update 〈(bal == b0, (b0 ≥ (x+ fee)⇒ bal == b0− x− fee) ∧
(b0 < (x+ fee)⇒ bal == b0)),

bUpdate : (bal == b0,(b0 ≥ x⇒ bal == b0− x) ∧
(b0 < x⇒ bal == b0))〉 TFeeAccount ∗

bUpdate 〈(bal == b0,(b0 ≥ x⇒ bal == b0− x)∧ (b0 < x⇒ bal == b0)),
bbUpdate : (bal == b0,bal == b0− x)〉 TPosUpd[bbU]

bbUpdate 〈(bal == b0,bal == b0− x), /0〉 TBasicUpd[bbU]

Abbreviations for trait expressions:
TBasicUpd[bU] = TBasicUpd[update renameTo bUpdate]
TBasicUpd[bbU]= TBasicUpd[update renameTo bbUpdate]
TFeeUpd[bbU] = TFeeUpd[bUpdate renameTo bbUpdate][update renameTo bUpdate]
TPosUpd[bbU] = TPosUpd[bUpdate renameTo bbUpdate][update renameTo bUpdate]

Fig. 12. Summary of the analysis of the withdraw method in each class.

and of how the trait language considered in this paper relates to other trait languages. We do not attempt to give a
general discusion of object-oriented program verification here, but focus on how different approaches address code
reuse mechanisms.

Multiple specifications of methods have been recognized as a convenient way of specifying behavior, for example
in Fresco capsules [Wil91], with the also-constructs of JML [BCC+05], and in Parkinson and Bierman’s work [PB08].
In these approaches, two specifications are flattened (or “desugared”) into a single specification by a composition rule;
e.g., in Fresco two specifications (p1,q1) and (p2,q2) of the same method have the interpretation (p1∨ p2,(p1→ qo

1)∧
(p2→ qo

2)) according to our notation. Note that this example demonstrates how it is never necessary to allow multiple
specifications, but rather it is a convenience which is particularly clear with incremental approaches to deductive
reasoning. In the context of the flexible code reuse offered by traits, there can be several specifications and we have
therefore opted for an approach based on reasoning over sets of specifications instead of flattening these sets.

Single inheritance is the object-oriented code reuse mechanism which is by far the most studied and best sup-
ported in formal systems for program analysis. In the context of single inheritance, behavioral reasoning about ex-
tensible class hierarchies with late bound method calls is often performed in the context of behavioral subtyping
(see, e.g., [LW94, Ame91, LN06, PHM99]). Behavioral subtyping is an incremental reasoning strategy in the sense
that a subclass may be analyzed in the context of previously defined classes. In order to avoid reverification of su-
perclasses, method overriding must preserve the specifications of overridden methods. This approach has also been

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 23

used for SCALA’s ‘trait’ construct, but “significantly reduced the applicability and thereby benefits of traits” [Sch10].
Combining separation logic with object-oriented structuring mechanisms, Parkinson and Bierman propose abstract
predicate families which relate a set of implementations to the late binding mechanism [PB08]. The approach sepa-
rates behavioral subtyping requirements on dynamic specifications from code reuse flexibility on static specifications
and goes beyond behavioral subtyping by allowing new specifications of inherited code in a subclass, which need not
respect the dynamic specifications of the superclass. Lazy behavioral subtyping [DJOS10] is an incremental reason-
ing strategy which supports more flexible code reuse than behavioral subtyping. With lazy behavioral subtyping, the
requirements that a method guarantee imposes on late bound method calls are identified, and the main idea is that
there is no need to preserve the full specifications of overridden methods. In order to avoid reverification of superclass
methods, only the weaker requirements imposed on late bound method calls need to be preserved by method redefini-
tions in subclasses. Lazy behavioral subtyping is more flexible than the approach of [PB08] as it completely separates
interface inheritance (for late bound external calls) and code reuse, and only requires compliance for requirements on
internal calls instead of their specifications. Although traits do not support late bound internal calls, the flexible reuse
of traits motivates us to follow the lazy behavioral subtyping approach in maintaining a separation of concerns between
required and guaranteed assertions for method calls and definitions, respectively, and in allowing sets of specifications
for each method definition.

Multiple inheritance is widely used in modeling notations such as UML [BRJ99], to capture that a concept nat-
urally inherits from several other concepts. Versions of multiple inheritance are found in C++, CLOS, Eiffel, and
OCaml. Creol [JOY06] has proposed a so-called healthy binding strategy which resolves horizontal name conflicts by
avoiding accidental overriding. The proof systems presented in [NCMM09,DJOS11,LQ08,vSC10] are the only proof
systems we know for multiple inheritance class hierarchies. The work in [NCMM09] presents a Hoare-style program
logic for Eiffel that handles multiple inheritance based on an existing program logic for single inheritance by extending
the method lookup definition. In [LQ08], method calls are assumed to be fully qualified in order to avoid ambiguities,
and diamond inheritance is not considered. In [vSC10], ambiguities are assumed to be resolved by the programmer,
a method can only be inherited if it has the same implementation in all parents. In contrast, [DJOS11] applies lazy
behavioral subtyping to multiple inheritance and shows that healthy method binding is sufficient to allow incremental
reasoning about multiple inheritance class hierarchies. The main challenges for reasoning about class hierarchies with
multiple inheritance are related to late bound method calls, such as accidental or ambiguous overriding (sometimes
called the “diamond problem”). In contrast, traits do not support late binding and require explicit disambiguation from
the programmer. However, the flexible composition supported by traits necessitates a delayed selection of relevant
method specifications, such that the requirements in our proof system are first checked when classes are assembled
from traits. Technically, this makes lazy behavioral subtyping fairly different from the proposed proof system for traits.
We are not aware of any previous proposal for a deductive proof system for a trait-based language.

Invasive code reuse mechanisms such as aspect-oriented programming (AOP) [KLM+97,FES10], feature-oriented
programming (FOP) [BSR04, AKL13] and delta-oriented programming (DOP) [SBB+10] have been proposed to im-
prove code reuse at different levels of the software design by allowing methods defined in one module to be intercepted
or changed in another module. Similar to traits, this code reuse flexibility poses a challenge for program verification.
In contrast to traits, AOP, FOP and DOP have a notion of original call, which allows the redefined method to be
called from inside the redefinition. Most prominently, AOP aims to modularize code that crosscuts the basic program
modules [KLM+97]; so-called advice is used to allow a definition in an aspect to affect methods defined elsewhere.
The two levels of modularity supported by AOP often improve code reuse in a program, compared to a single level
of modularity as in traditional object-oriented programming. However, the highly invasive nature of aspects makes it
very challenging to reason formally about program behavior. In contrast to traits, aspects rarely modify the state of
a program in practice [KF07]; i.e., the aspects are largely external to the functionality of the core programs. Neither
Aldrich [Ald05] nor Krishnamurthi and Fisler [KF07] address aspects which modify the program state in their work.
Extending AOP with open modules allow hiding implementation details from the advice mechanism, by using inter-
faces to export pointcuts. For a functional core calculus of open modules, Aldrich uses weak bisimulation techniques
to reason about module equivalence with respect to the application of advice [Ald05]. Krishnamurthi and Fisler use
CTL model checking to verify AOP programs expressed as state machines with pointcut interfaces [KF07], to identify
when the application of an aspect may violate properties of the original program. Similar to our work their approach
is incremental and uses a cache. Extending the idea of pointcut interfaces, translucent contracts have been proposed
to behaviorally restrict the applicability of aspects [BRLM11], thereby making AOP amenable to modular deductive
verification. These works on AOP are akin to ours in that they address reasoning about mechanisms which aim at
better code reuse than class inheritance. However, the proposed use of interfaces between classes and aspects would
quickly become unwieldy if adapted to the composition of trait expressions.

Whereas AOP addresses changes to method calls in terms of pointcuts, FOP and DOP address changes to a set

24 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

of classes to accomodate feature selection in software product lines, allowing in particular methods to be redefined.
Verification of FOP programs based on a meta-representation of all program variants that can be generated from a set
of feature modules is considered in [TSAH12]. In [TSKA11], proof scripts for single feature modules are extracted
from proofs for complete program variants and later composed for other program variants using these feature modules.
Hähnle and Schaefer propose an approach to deductive verification for DOP which relies on behavioral subtyping for
DOP [HS12]; i.e., specifications of methods introduced by deltas must be more specific than previous versions of these
methods. Thus, a delta can only modify state in a way which refines the program state and each delta can be verified by
approximating called methods defined in other deltas by the specification of their first declaration. We have proposed
a different approach [DDJ+12]; which considers deltas as transformations of a program, and delta specifications as
higher-order specifications which are instantiated at the delta composition time to transform a specific specification.
This transformational approach uses symbolic assumptions on called methods and thus separates the specifications of
method implementations from the requirements to method calls in a way which is similar to lazy behavioral subtyp-
ing [DJOS10]. The transformational approach leads to a two-phase verification process: the verification of deltas and
the verification of the actual products based on the specifications already established for the used deltas. We believe
that a transformational approach similar to [DDJ+12] could be applied to traits and a comparison between the approach
taken in this paper and a transformational proof system would be an interesting extension of the work presented in this
paper.

10. Conclusion and Future Work

This paper describes an approach to behavioral reasoning about trait-based object-oriented programs. Traits have been
proposed as a particularly flexible way to achieve a high degree of fine-grained code reuse. We develop a deductive
proof system, PST(PL), which reflects this fine-grained reuse potential at the level of behavioral reasoning. The
approach focusses on verifying interface contracts for classes assembled from traits, based on method specifications
in the traits. For flexible reuse, methods in traits have associated sets of possible specifications. These sets can be
extended with new specifications as needed for class verification in an incremental way. When verifying a class, the
interface contracts of the class drive the selection of possible specifications from the specification sets in the traits, in
such a way that the internal consistency among the selected specifications is guaranteed and such that the interface
contracts are valid. We show the soundness of PST(PL).

Trait-based code reuse is an interesting challenge for deductive proof systems because a high degree of reuse in a
code structuring mechanism typically limits the degree of reasoning reuse which can be supported by the proof system.
In particular, a trait cannot be fully verified independently of its context of composition. The presented approach
addresses this challenge by proposing an incremental and compositional proof system for traits, in which specifications
for methods in trait alteration expressions and in composed trait expressions are compositionally derived from basic
trait expressions, and in which the sets of possible specifications can be incremented at need during the verification
process. The approach combines bottom-up compositional reasoning about trait expressions with top-down selection
of consistent specifications for methods declared in different traits during the verification process for classes.

The complexity of verifying trait-based programs using our proof system can be compared to the naive approach
of first flattening the programs and then verifying them. When flattening each program built from a set of traits before
verifying it, we need to verify each method in isolation which requires as many proofs are there are methods. In this
case, there is no specification reuse. In the completely modular case of our proof system where the specifications in
the trait environment suffice to establish the external requirements, we do not need any new code analysis to verify
the new program. In the fully incremental case of our proof system where each external requirement needs a new
trait specification to be verified, we need one proof for each method which is the same as for the naive approach.
In all cases where some external requirements can be shown modularly from existing specifications and some exter-
nal specifications need incremental verification by adding new specifications, we have some specification reuse and
thereby less code analysis than when verifying flattened programs. With our approach, the gain comes from analyzing
many programs with the incrementally constructed trait environment, to achieve specification reuse similar to modular
reasoning for common ways of using of traits.

In this paper, we have concentrated on verifying method contracts given as pre- and postconditions. As future
work, it is interesting to investigate to what extent invariants could be useful for trait-based programs, both at the
level of classes and traits. A trait invariant can, for instance, capture relations between the required fields of a trait;
this will extend the range of properties that can be incrementally verified for trait-based programs. Further, we plan
to extend the KeY system [BHS07] for deductive verification of JAVA programs to a trait-based language such as
TRAITRECORDJ [BDSS13] and to implement the proof system proposed in this paper within KeY.

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 25

Acknowledgements. The authors are grateful to Wolfgang Ahrendt, Richard Bubel, Olaf Owe, and Volker Stolz for
valuable discussions on the subject of this work, and to the FAOC editor and anonymous reviewers for many useful
comments and suggestions for improving the presentation and for further pointers to related work.

References

[AdBO09] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification of Sequential and Concurrent Systems. Texts and
Monographs in Computer Science. Springer, 3rd edition, 2009.

[AKL13] Sven Apel, Christian Kästner, and Christian Lengauer. Language-independent and automated software composition: The Feature-
House experience. IEEE Transactions on Software Engineering, 39(1):63–79, 2013.

[Ald05] Jonathan Aldrich. Open modules: Modular reasoning about advice. In Andrew P. Black, editor, Proc. European Conference on
Object-Oriented Programming (ECOOP), volume 3586 of Lecture Notes in Computer Science, pages 144–168. Springer, 2005.

[ALZ03] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam—designing a Java extension with mixins. Transactions on Programming
Languages and Systems, 25(5):641–712, September 2003.

[Ame91] Pierre America. Designing an object-oriented programming language with behavioural subtyping. In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages, volume 489 of Lecture Notes in Computer Sci-
ence, pages 60–90. Springer, 1991.

[Apt81] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey — Part I. Transactions on Programming Languages and Systems, 3(4):431–
483, October 1981.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Norman Meyrowitz, editor, Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages, and Applications / European Conference on Object-Oriented Programming, pages
303–311. ACM Press, 1990.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik
Poll. An overview of JML tools and applications. International Journal on Software Tools for Technology Transfer, 7(3):212–232,
2005.

[BCD12] Lorenzo Bettini, Sara Capecchi, and Ferruccio Damiani. On flexible dynamic trait repacement for Java-like languages. Science of
Computer Programming, 2012. Available online doi:10.1016/j.scico.2012.11.003.

[BDD+10] Lorenzo Bettini, Ferruccio Damiani, Marco De Luca, Kathrin Geilmann, and Jan Schäfer. A calculus for boxes and traits in a Java-
like setting. In Dave Clarke and Gul Agha, editors, Coordination Models and Languages, volume 6116 of Lecture Notes in Computer
Science, pages 46–60. Springer, 2010.

[BDG07] Viviana Bono, Ferruccio Damiani, and Elena Giachino. Separating Type, Behavior, and State to Achieve Very Fine-grained Reuse.
In Proc. Formal Techniques for Java-like Programs (FTfJP), 2007.

[BDG08] Viviana Bono, Ferruccio Damiani, and Elena Giachino. On Traits and Types in a Java-like setting. In Fifth IFIP International
Conference On Theoretical Computer Science (TCS’08), volume 273 of International Federation for Information Processing, pages
367–382. Springer, 2008.

[BDGS13] Lorenzo Bettini, Ferruccio Damiani, Kathrin Geilmann, and Jan Schäfer. Combining traits with boxes and ownership types in a
Java-like setting. Science of Computer Programming, 78(2):218–247, 2013.

[BDN+09] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou, and Marcus Denker. Pharo by Example. Square
Bracket Associates, 2009.

[BDNW08] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Stateful traits and their formalization. Computer Languages,
Systems & Structures, 34(2-3):83–108, 2008.

[BDS09] Lorenzo Bettini, Ferruccio Damiani, and Ina Schaefer. Implementing SPL using Traits. Technical report, Dipartimento di Informatica,
Università di Torino, 2009. Available at www.di.unito.it/˜damiani/papers/isplurat.pdf.

[BDS10] Lorenzo Bettini, Ferruccio Damiani, and Ina Schaefer. Implementing software product lines using traits. In Proceedings of the 2010
ACM Symposium on Applied Computing (SAC’10), pages 2096–2102. ACM Press, 2010.

[BDSS10] Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer, and Fabio Strocco. A prototypical Java-like language with records and traits. In
Proceedings of the 8th International Conference on the Principles and Practice of Programming in Java (PPPJ’10), pages 129–138.
ACM Press, 2010.

[BDSS13] Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer, and Fabio Strocco. TRAITRECORDJ: A programming language with traits and
records. Science of Computer Programming, 2013. In press, available online doi:10.1016/j.scico.2011.06.007.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of Object-Oriented Software: The KeY Approach,
volume 4334 of Lecture Notes in Computer Science. Springer, 2007.

[BRJ99] Grady Booch, James E. Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User Guide. Addison-Wesley, 1999.
[BRLM11] Mehdi Bagherzadeh, Hridesh Rajan, Gary T. Leavens, and Sean L. Mooney. Translucid contracts: expressive specification and

modular verification for aspect-oriented interfaces. In Paulo Borba and Shigeru Chiba, editors, Proceedings of the 10th International
Conference on Aspect-Oriented Software Development (AOSD 2011), pages 141–152. ACM Press, 2011.

[BSR04] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refinement. IEEE Transactions on Software Engineering,
30:355–371, 2004.

[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction. Graduate Texts in Computer Science.
Springer, 1998.

[dB99] Frank S. de Boer. A WP-calculus for OO. In Wolfgang Thomas, editor, Proceedings of Foundations of Software Science and
Computation Structure (FOSSACS’99), volume 1578 of Lecture Notes in Computer Science, pages 135–149. Springer, 1999.

[DDJ+12] Ferruccio Damiani, Johan Dovland, Einar Broch Johnsen, Olaf Owe, Ina Schaefer, and Ingrid Chieh Yu. A transformational proof
system for delta-oriented programming. In Eduardo Santana de Almeida, Christa Schwanninger, and David Benavides, editors, Proc.
16th International Software Product Line Conference (SPLC’12), Volume 2, pages 53–60. ACM Press, 2012.

26 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

[DDJS11] Ferrucio Damiani, Johan Dovland, Einar Broch Johnsen, and Ina Schaefer. Verifying traits: A proof system for fine-grained reuse.
In Proc. Formal Techniques for Java-like Programs (FTfJP), pages 8:1–8:6. ACM Press, 2011.

[DJOS10] Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen. Lazy behavioral subtyping. Journal of Logic and Algebraic
Programming, 79(7):578–607, 2010.

[DJOS11] Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen. Incremental reasoning with lazy behavioral subtyping for
multiple inheritance. Science of Computer Programming, 76(10):915–941, 2011.

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black. Traits: A mechanism for fine-grained
reuse. Transactions on Programming Languages and Systems, 28(2):331–388, 2006.

[FES10] Bruno De Fraine, Erik Ernst, and Mario Südholt. Essential AOP: The A calculus. In Theo D’Hondt, editor, Proc. European Con-
ference on Object-Oriented Programming (ECOOP), volume 6183 of Lecture Notes in Computer Science, pages 101–125. Springer,
2010.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In Proc. Principles of Programming Languages
(POPL), pages 171–183. ACM Press, 1998.

[HLL+12] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew J. Parkinson. Behavioral interface specification
languages. ACM Computing Surveys, 44(3):16, 2012.

[Hoa69] Charles Antony Richard Hoare. An Axiomatic Basis of Computer Programming. Communications of the ACM, 12:576–580, 1969.
[Hoa71] Charles Antony Richard Hoare. Procedures and parameters: An axiomatic approach. In E. Engeler, editor, Symposium On Semantics

of Algorithmic Languages, volume 188 of Lecture Notes in Mathematics, pages 102–116. Springer, 1971.
[HS12] Reiner Hähnle and Ina Schaefer. A Liskov principle for delta-oriented programming. In Tiziana Margaria and Bernhard Steffen,

editors, Proc. 5th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA),
volume 7609 of Lecture Notes in Computer Science, pages 32–46. Springer, 2012.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal core calculus for Java and GJ. Transactions
on Programming Languages and Systems, 23(3):396–450, 2001.

[JOY06] Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe object-oriented model for distributed concurrent systems.
Theoretical Computer Science, 365(1–2):23–66, November 2006.

[KF07] Shriram Krishnamurthi and Kathi Fisler. Foundations of incremental aspect model-checking. Transactions on Software Engineering
and Methodology, 16(2), 2007.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka, editors, Proc. European Conference on Object-Oriented Program-
ming (ECOOP), volume 1241 of Lecture Notes in Computer Science, pages 220–242. Springer, 1997.

[LM96] Marc Van Limberghen and Tom Mens. Encapsulation and composition as orthogonal operators on mixins: A solution to multiple
inheritance problems. Object Oriented Systems, 3(1):1–30, 1996.

[LN06] Gary T. Leavens and David A. Naumann. Behavioral subtyping, specification inheritance, and modular reasoning. Technical Report
06-20a, Department of Computer Science, Iowa State University, Ames, Iowa, 2006.

[LQ08] Chenguang Luo and Shengchao Qin. Separation logic for multiple inheritance. Electronic Notes in Theoretical Computer Science,
212:27–40, April 2008. Proc. First Intl. Conf. on Foundations of Informatics, Computing and Software (FICS).

[LS08a] Luigi Liquori and Arnaud Spiwack. Extending FeatherTrait Java with interfaces. Theoretical Computer Science, 398(1-3):243–260,
2008.

[LS08b] Luigi Liquori and Arnaud Spiwack. FeatherTrait: A modest extension of Featherweight Java. Transactions on Programming Lan-
guages and Systems, 30(2):1–32, 2008.

[LSZ09] Giovanni Lagorio, Marco Servetto, and Elena Zucca. Flattening versus direct semantics for Featherweight Jigsaw. In Proc. Workshop
on Foundations of Object-Oriented Languages (FOOL), 2009.

[LW94] Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. Transactions on Programming Languages and Systems,
16(6):1811–1841, November 1994.

[NCMM09] Martin Nordio, Cristiano Calcagno, Peter Müller, and Bertrand Meyer. A Sound and Complete Program Logic for Eiffel. In M. Oriol,
editor, TOOLS-EUROPE 2009, volume 33 of Lecture Notes in Business and Information Processing, pages 195–214, 2009.

[NDS06] Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. Flattening traits. Journal of Object Technology, 5(4):129–148, 2006.
[OG76] Susan Owicki and David Gries. An axiomatic proof technique for parallel programs I. Acta Informatica, 6(4):319–340, 1976.
[OSV10] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Press, 2 edition, 2010.
[PB08] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and inheritance. In Proc. Principles of Programming

Languages (POPL), pages 75–86. ACM Press, 2008.
[PBC06] Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno. Variables as resource in Hoare logics. In Proc. Symposium on Logic

in Computer Science (LICS’06), pages 137–146. IEEE Computer Society Press, 2006.
[PHM99] Arnd Poetzsch-Heffter and Peter Müller. A programming logic for sequential Java. In S. Doaitse Swierstra, editor, 8th European

Symposium on Programming Languages and Systems (ESOP’99), volume 1576 of Lecture Notes in Computer Science, pages 162–
176. Springer, 1999.

[RT06] John H. Reppy and Aaron Turon. A foundation for trait-based metaprogramming. In Proceedings of FOOL/WOOD, 2006.
[RT07] John H. Reppy and Aaron Turon. Metaprogramming with traits. In Proc. European Conference on Object-Oriented Programming

(ECOOP), volume 4609 of Lecture Notes in Computer Science, pages 373–398. Springer, 2007.
[SAC+11] Guy L. Steele Jr., Eric E. Allen, David Chase, Christine H. Flood, Victor Luchangco, Jan-Willem Maessen, and Sukyoung Ryu.

Fortress (Sun HPCS language). In David A. Padua, editor, Encyclopedia of Parallel Computing, pages 718–735. Springer, 2011.
[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. Delta-Oriented Programming of Software

Product Lines. In Jan Bosch and Jaejoon Lee, editors, Software Product Lines: Going Beyond (SPLC’10), volume 6287 of Lecture
Notes in Computer Science, pages 77–91. Springer, 2010.

[Sch10] Malte Schwerhoff. Verifying Scala traits. Semester Report, Swiss Federal Institute of Technology Zurich (ETH), October 2010.
[SD05] Charles Smith and Sophia Drossopoulou. Chai: Traits for Java-like languages. In Proc. European Conference on Object-Oriented

Programming (ECOOP), volume 3586 of Lecture Notes in Computer Science, pages 453–478. Springer, 2005.

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 27

T ⊕ (TAE,ao) , T [TAE ao 7→ mod(T (TAE),ao)]

mod({F;H;AM}, [exclude m]) ,

{
{F;H;AM} if m /∈ AM
{fields(remMtd(AM,m));calls(remMtd(AM,m));remMtd(AM,m)} otherwise

mod({F;H;AM}, [m aliasAs m′]) ,

{
{F;H;AM} if m /∈ AM
{F;H\m′;AM renId(AM(m),m,m′)} otherwise

mod({F;H;AM}, [m renameTo m′]) , {F;calls(renMtd(AM,m,m′));renMtd(AM,m,m′)}
mod({F;H;AM}, [f renameTo f′]) , {fields(renFld(AM,f,f′));H;renFld(AM,f,f′)}

remMtd(/0,m) , /0

remMtd(I n(I x){t} sp AM,m) ,

{
AM if m= n
I n(I x){t} sp remMtd(AM,m) otherwise

renId(I n(I x){t} sp,m,m′) , I n[m′/m](I x){t} sp
renMtd(/0,m,m′) , /0
renMtd(AM AM,m,m′) , renMtd(AM,m,m′) renMtd(AM,m,m′)
renMtd(I n(I x){t} sp,m,m′) , I n[m′/m](I x){t[m′/m]} renSM(sp,m,m′)
renFld(/0,f,f′) , /0
renFld(AM AM,f,f′) , renFld(AM,f,f′) renFld(AM,f,f′)

renFld(M sp,f,f′) ,

{ renMF(M,f,f′) discard(sp,{f,f′,assign(M)}) if f ∈ fields(M)∧f′ ∈ fields(M)
renMF(M,f,f′) renSF(discard(sp,{f′}),f,f′) if f′ /∈ fields(M)
M discard(sp,{f}) otherwise

renSM(ε,m,m′) , ε

renSM(〈(p,q),R〉 sp,m,m′) , 〈(p,q),renRM(R,m,m′)〉 renSM(sp,m,m′)
renRM(/0,m,m′) , /0
renRM(n : (r,s) R,m,m′) , n[m′/m] : (r,s) renRM(R,m,m′)
renSF(ε,f,f′) , ε

renSF(〈(p,q),R〉 sp,f,f′) , 〈(p[f′/f],q[f′/f]),renRF(R,f,f′)〉 renSF(sp,f,f′)
renRF(/0,f,f′) , /0
renRF(n : (r,s) R,f,f′) , n : (r[f′/f],s[f′/f]) renRF(R,f,f′)
renMF(I n(I x){t},f,f′) , I n(I x){t[f′/f]}
discard(ε,f) , ε

discard(sp sp,f) ,

{
discard(sp,f) if f∩ vars(sp) 6= /0
sp discard(sp,f) otherwise

Fig. 13. The definition of T ⊕ (TAE,ao) with associated auxiliary functions.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits: Composable units of behavior. In Proc. Euro-
pean Conference on Object-Oriented Programming (ECOOP), volume 2743 of Lecture Notes in Computer Science, pages 248–274.
Springer, 2003.

[Tra11] TraitRecordJ website, May 2011. http://traitrecordj.sourceforge.net/.
[TSAH12] Thomas Thüm, Ina Schaefer, Sven Apel, and Martin Hentschel. Family-based deductive verification of software product lines. In

International Conference on Generative Programming and Component Engineering (GPCE), pages 11–20. ACM Press, 2012.
[TSKA11] Thomas Thüm, Ina Schaefer, Martin Kuhlemann, and Sven Apel. Proof composition for deductive verification of software product

lines. In Proc. Intl. Workshop on Variability-intensive Systems Testing, Validation and Verification, pages 270–277. IEEE Computer
Society Press, 2011.

[vSC10] Stephan van Staden and Cristiano Calcagno. Reasoning about multiple related abstractions with MultiStar. In Proc. Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), pages 504–519. ACM Press, 2010.

[Wil91] Alan Wills. Capsules and types in Fresco: Program verification in Smalltalk. In Pierre America, editor, Proc. European Conference
on Object-Oriented Programming (ECOOP), volume 512 of Lecture Notes in Computer Science, pages 59–76. Springer, 1991.

28 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

A. Auxiliary Functions for Extending the Trait Environment

This section details the auxiliary functions used to update the trait environment for trait alteration expressions in
the rule EXTEND of the proof system for trait analysis given in Section 7.2. The auxiliary functions are defined in
Figure 13. The update function T ⊕ (TAE,ao) creates an entry for TAE ao in T by modifying the existing entry
for TAE. For a set M of method definitions, let the functions fields(M) and calls(M) return the required fields and
method signatures of M, respectively. These functions are straightforwardly lifted to annotated methods by ignoring
specifications (e.g., fields(M sp) , fields(M)) and to sets of annotated methods. For a set H of method signatures, let
H \m return the set H except the signature for m. Without loss of generality, we may assume that there are no name
clashes between fields and locally defined variables in methods. Let assign(M) denote the subset of fields(M) to which
a method M assigns values (the write-set of M). Given a method specification sp, let vars(sp) denote the set of free
variables in sp.

Trait alteration operations construct a new trait expression from an old trait expression. The modification function
mod is defined by cases for the different trait alteration operations. For the operation [exclude m], the new trait
expression is obtained by removing the definition and specifications of m, if present, from the old trait expression.
For the operation [m aliasAs m′], the new trait expression is obtained by duplicating the definition of m, if defined,
and giving the copy the new name m′. The new method m′ has the same specifications as the old method. For the
[m renameTo m′] operation, the new trait expression is obtained by a consistent renaming in all method definitions
and requirements.

As discussed in Section 5, field renaming requires special care since a direct substitution may invalidate specifi-
cations. For the operation [f renameTo f′], this is reflected in the definition of renFld(M sp,f,f′) which applies to
each method in the old trait expression. If both f and f′ occur in the method body, the new method is obtained by
discarding all previous specifications, except those that do not contain variables occurring in f, f′, and the write-set
of M. Thus, the remaining specifications are neither affected by the substitution nor by the execution of M. This is
a strong restriction on the specifications, capturing that the behavior of the method has changed. Note that it is not
a sufficient requirement that the specification itself does not contain f or f′ in order to be preserved; for example
{true} f := 5;f′ := 6;u := f {u == 5} becomes invalid if f is replaced by f′. The second line in the definition
of renFld(M sp,f,f′) covers the case where the new field f′ does not occur in the method body. In this case, spec-
ifications which contain the new field f′ are discarded to avoid name clashes. In the remaining specifications, all
occurrences of f are renamed. The otherwise case covers the situation f′ ∈ fields(M)∧f /∈ fields(M). In this case, the
old field f does not occur in the method, which means that the method definition itself is not changed. To avoid name
clashes, we then discard the specifications which contain f. The soundness of T ⊕ (TAE,ao) follows by Lemma B.2.
(A more fine-grained analysis of field renaming may be possible in program logics PL which support variables-as-
resources [PBC06].)

The auxiliary function renSM(sp,m,m′) renames the method m in sp. Since method names do not occur in asser-
tions, this function is defined in terms of renRM which replaces each requirement n : (r,s) by n[m′/m] : (r,s). Similarly,
the function renSF(sp,f,f′) renames the field f in sp, and is defined in terms of renRF which renames fields in re-
quirements. The function renMF renames fields in method definitions, and the function discard(sp,f) returns sp
except specifications that contain variables in f.

B. Soundness of PST(PL)

Appendix B.1 presents the proof for the soundness of PST(PL). The main soundness result is formalized by The-
orem 7.4, which expresses that the verification of a class leads to a consistent set of specifications for that class.
Appendix B.2 contains auxiliary lemmas used for the soundness proof. Especially, the proof of Lemma B.2 ensures
that the trait environment T is sound after the successful analysis of the basic trait declarations; i.e., there is a valid
proof outline for all specifications recorded in T during the analysis of traits and classes. We here assume that trait
and class environments have been constructed from the empty trait and class environments by application of the rules
of PST(PL).

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 29

B.1. Main Theorem

Theorem 7.4. For a given class class C implements I by { rpI ,F; } and CTE, if the successful analysis of C
in PST(PL) leads to a class environment C , then the set of method specifications for C in C are consistent for the
flattened version of C.

Proof. We first check Condition 2 in Definition 7.3. For each m ∈ mtds(CTE), we consider the set SC (C,m). Let
CTE , TAE1 + . . .+TAEn. By type safety, there must be exactly one i (for 1≤ i≤ n) such that m ∈mtds(T (TAEi)).
By Lemma B.6 we know that SC (C,m)⊆ specs(T (TAEi)(m)). Let 〈(p,q),R〉 ∈ SC (C,m). By Lemma B.2, there exists
a proof outline O for the method body of m with guarantee (p,q) such that R _ reqs(O). For each n : (r,s) ∈ R, we
prove guar(SC (C,n)) _ (r,s) by induction over the inference rules of PST(PL).

To include 〈(p,q),R〉 in SC (C,m), rule ANALYZE must be applied, which again generates a discharge operation
for a set of requirements which includes R. Repeatedly applying rule DECOMP4 results in a discharge(n : (r,s))
operation, which is analyzed by either OPENANALYSIS or CLOSEANALYSIS. If OPENANALYSIS is applied, we get
an operation analyze(TAE j,n : (r,s)) where j is such that n ∈mtds(T (TAE j)). This operation must again be handled
by the ANALYZE rule, which ensures the entailment guar(SC (C,n)) _ (r,s). Before ANALYZE can be applied in the
proof, INCREMENT may be needed to introduce the necessary specifications sp into the trait environment to ensure
that guar(sp) _ (r,s). The application of ANALYZE again generates a discharge operation for a set of requirements
which includes req(sp). Since the analysis of C succeeds, the repeated application of ANALYZE must eventually
terminate. If CLOSEANALYSIS is applied, the conclusion guar(SC (C,n)) _ (r,s) follows directly.

For Condition 1 in Definition 7.3, we have by the rules CLASS and DECOMP4 that a discharge(m : (r,s)) operation
is analyzed for each m : (r,s) ∈ contracts(rpI ,I). By an argument corresponding to the one for discharge above, we
get SC (C,m) _ (r,s).

It follows from Lemma B.5 that the sets of method specifications SC (C,m) for all m ∈ mtds(CTE) constitute a
consistent set of method specifications for the flattened version of C.

B.2. Auxiliary Lemmas

Lemma B.1. Let the trait alteration expression TAE be defined by Tb ao. If TAE ∈T , then for any (possibly empty)
prefix ao′ of ao, we also have Tb ao′ ∈T .

Proof. The proof is by induction over the length of the list ao of alteration operations. If ao is empty, then TAE
is a basic trait Tb which is introduced in T by rule BASICTRAIT. For the induction step, consider TAE ao, where
TAE = Tb ao. Since TAE ao must have been introduced by rule EXTEND, we have that TAE ∈ T , i.e., we have
Tb ao ∈T . By the induction hypothesis, Tb ao′ ∈T for all prefixes ao′ of ao.

Lemma B.2 (Soundness of T). Let T be a trait environment such that all basic traits in T are successfully analyzed.
Then the following holds for all TAE ∈T :

∀(M sp) ∈T (TAE) . ∀〈(p,q),R〉 ∈ sp .
∃O . O `PL body(M) : (p,q) ∧ R_ reqs(O)

Proof. The proof is by induction over the structure of TAE. By Lemma B.1 each prefix of TAE is also in T .
Base case: TAE = Tb. Then 〈(p,q),R〉 is included in sp by either VERIFY or BASICTRAIT. If rule VERIFY is

applied, the lemma follows immediately from the premise of the rule. The application of rule BASICTRAIT, possibly
followed by a number of DECOMP1 and DECOMP2 applications, results in an operation verify(Tb,M〈(p,q),R〉) for
every specification 〈(p,q),R〉 of some M in Tb. This operation is analyzed by VERIFY after zero or more applications
of ADAPTATION. We close this case of the proof by induction over the number of applications of ADAPTATION. For
zero applications, the lemma follows directly from the application of VERIFY. For the induction step, we assume a
specification 〈(p′,q′),R′〉 such that 〈(p′,q′),R′〉_ 〈(p,q),R〉 and O′ `PL body(M) : (p′,q′) and R′_ reqs(O′) for some
proof outline O′. By Lemma 4.7, there is a proof outline O such that O `PL body(M) : (p,q) and R_ reqs(O).

Induction step: TAE= TAE′ ao. By Lemma B.1, TAE′ ∈T . Let T (TAE′) = {F;H;AM}. The induction hypothesis
IH assumes proof outlines for these methods; i.e., ∀(M sp)∈ AM . ∀〈(p,q),R〉 ∈ sp . ∃O . O`PL body(M) : (p,q)∧R_
reqs(O).

The only rules that extend T with a new specification for non-basic traits are VERIFY and EXTEND. If 〈(p,q),R〉
is included in the trait environment by VERIFY, the conclusion follows immediately. If EXTEND is applied, the trait

30 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

environment is extended to T [TAE 7→ mod(T (TAE′),ao)], where the definition of mod can be found in Figure 13.
The different cases for ao ensure the conditions of the lemma as follows:

• ao= [exclude m]. Here T (TAE) contains the set AM′ = AM\AM(m). Proof outlines for AM′ follow from IH.
• ao= [m aliasAs m′]. Then T (TAE) contains the annotated methods AM, and proof outlines for these specifica-

tions follow from IH. The trait T (TAE) contains additional specifications if m∈ AM. Let AM(m) = I m(I x){t} sp.
Then I m′(I x){t} sp is included in T (TAE). Proof outlines for sp follow directly from IH.

• ao = [m renameTo m′]. For each I n(I x){t} sp in AM, we have by Figure 13 that the following method is
included in T (TAE): I n[m′/m](I x){t[m/m′]} renSM(sp,m,m′). For each 〈(p,q),R〉 ∈ sp, we have by IH that
there is a proof outline O for t such that O `PL t : (p,q) where R _ reqs(O). From the definition of renSM
in Figure 13, the specification 〈(p,q),renRM(R,m,m′)〉 is included in T (TAE)(n[m′/m]). From the definition of
renRM we observe that if R _ reqs(O), then renRM(R,m,m′) _ renRM(reqs(O),m,m′). We construct a proof
outline O′ for t[m′/m] by replacing each call {r} m {s} in O by {r} m′ {s}, i.e, reqs(O′) = renRM(reqs(O),m,m′).
The desired conclusion renRM(R,m,m′) _ reqs(O′) then follows since R_ reqs(O).

• ao= [f renameTo f′]. For each method I m(I x){t}sp in AM, the modified method renFld(I m(I x){t}sp,f,f′)
is included in T (TAE). The different cases in the definition of this function are considered separately.

– Case f ∈ fields(t)∧f′ ∈ fields(t). In this case, f is replaced by f′ in the method body t and all specifications
which contain f, f′, or variables in assign(t) are discarded. Thus, if a specification 〈(p,q),R〉 is included,
we have vars〈(p,q),R〉 ∩ {f,f′,assign(t)} = /0. By IH, there is a proof outline O such that O `PL t : (p,q)
where R _ reqs(O). It then follows that O is a proof outline for t[f′/f] since O is valid for t. Especially, for
some statement t1 not containing method calls, if {s} t1 {r} is valid for some s and r such that vars(s,r)∩
{f,f′,assign(t1)}= /0 then {s} t1[f′/f] {r} is also valid.

– Case f′ /∈ fields(t). The new method body is obtained by renaming f to f′. For each specification 〈(p,q),R〉 ∈
sp, the modified specification renSF(〈(p,q),R〉,f,f′) is added to T (TAE) if f′ /∈ vars({p,q,R}). By IH there
is a proof outline O such that O `PL t : (p,q) and R _ reqs(O). Since f′ does not occur in O, a proof outline
for t[f′/f] can be constructed directly by field renaming, resulting in the specification renSF(〈(p,q),R〉,f,f′).

– Case f′ ∈ fields(t)∧f /∈ fields(t). In this case, the method body is unaltered by the rename operation. However,
we discard specifications containing the renamed field f. Proof outlines for the remaining specifications follow
directly by IH.

Observation B.3. Let mtds(AM) = M and M = I n(I x){t}. The following properties follow from the definitions in
Figure 13 and Figure 4:

1. mtds(remMtd(AM,m)) = mtds(AM\AM(m)) = M\M(m) = rem(M,m) = rem(mtds(AM),m)
2. mtds(renId(M sp,m,m′)) = mtds(I n[m′/m](I x){t} sp) = I n[m′/m](I x){t}= ren(M,m,m′)
3. mtds(renMtd(AM,m,m′)) = rep(mtds(AM),m,m′)
4. mtds(renFld(AM,f,f′)) = rep(mtds(AM),f,f′)

Property 3 above follows by induction over the size of AM with the base case mtds(FSrenMtd(/0,m,m′)) = /0 =
rep(/0,m,m′) and the induction step

mtds(renMtd(AM I n(I x){t} sp,m,m′)) =
mtds(renMtd(AM,m,m′)) mtds(I n[m′/m](I x){t[m′/m]} sp) =
rep(mtds(AM),m,m′) I n[m′/m](I x){t[m′/m]}= rep(mtds(AM I n(I x){t} sp),m,m′).

Property 4 follows by a similar argument.

Lemma B.4. Given a trait expression TAE such that TAE ∈T , then mtds(T (TAE)) = JTAEK.

Proof. The proof is by induction over the structure of TAE.
Base case: TAE is a basic trait trait Tb is {F;H;AM} be the definition of Tb. Let M = mtds(AM). This trait is

introduced in T by rule BASICTRAIT. By induction over the inference rules, we then know that T (Tb) = {F;H;AM′}
for some AM′ such that mtds(AM′) = mtds(AM), since no rules add new method definitions to a trait in T . (However,
AM′ may contain more specifications than AM.) From the definition of flattening for a basic trait (Figure 3), we get

mtds(T (Tb)) = mtds(AM′) = M
Figure 3
= J{F;H;M}K Figure 3

= JTbK.

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 31

Induction step: TAE = TAE′ ao. Since TAE ∈ T , we know from Lemma B.1 that TAE′ ∈ T . Assume that
T (TAE′) = {F;H;AM}, so mtds(T (TAE′)) = mtds(AM). The induction hypothesis IH is that mtds(T (TAE′)) =
JTAE′K, so, JTAE′K = mtds(AM). The different trait alteration operations are treated as separate cases:

• ao= [exclude m]:

mtds(T (TAE))
Figure 13

= mtds(remMtd(AM,m)) Obs. B.3
= rem(mtds(AM),m) IH

=

rem(JTAE′K,m) Figure 3
= JTAE′[exclude m]K = JTAEK

• ao= [m aliasAs m′]. Case m /∈ AM:

mtds(T (TAE))
Figure 13

= mtds(AM) IH
= JTAE′K Figure 3

= JTAE′[m aliasAs m′]K = JTAEK

Case m ∈ AM:

mtds(T (TAE))
Figure 13

= mtds(AM) mtds(renId(AM(m),m,m′)) Obs. B.3
= mtds(AM) ren(AM(m),m,m′)

IH
= JTAE′K ren(JTAE′K(m),m,m′) Figure 3

= JTAE[m aliasAs m′]K = JTAEK

• ao= [m renameTo m′]:

mtds(T (TAE))
Figure 13

= mtds(renMtd(AM,m,m′)) Obs. B.3
= rep(mtds(AM),m,m′) IH

= rep(JTAE′K,m,m′)
Figure 3
= JTAE′[m renameTo m′]K = JTAEK

• ao= [f renameTo f′]:

mtds(T (TAE))
Figure 13

= mtds(renFld(AM,f,f′)) Obs. B.3
= rep(mtds(AM),f,f′) IH

= rep(JTAE′K,f,f′)
Figure 3
= JTAE′[f renameTo f′]K = JTAEK

Lemma B.5. Let CTE be a composed trait expression defined by TAE1+ . . .+TAEn, and assume that each TAEi ∈T .
Then mtds(CTE) = JCTEK.

Proof. This follows directly from the definition of mtds(CTE) together with Lemma B.4 and the definition of flattening
(Section 3.2).

mtds(CTE) ,
⋃

1≤i≤n

mtds(T (TAEi))
Lemma B.4

=
⋃

1≤i≤n

JTAEiK
Figure 3
= JCTEK

Lemma B.6. Consider class C implements I by { rpI F; } and CTE such that CTE , TAE1 + . . .+TAEn. Let
the environments T and C result from the successful analysis of this class. For m ∈ mtds(TAEi) and 1 ≤ i ≤ n, we
have

SC (C,m)⊆ specs(T (TAEi)(m)).

Proof. By type safety, each method in CTE is defined in exactly one TAEi. The relation SC (C,m)⊆ specs(T (TAEi)(m))
follows by induction over the inference rules of PST(PL). When the analysis of class C starts by rule CLASS, the map-
ping SC (C,m) is initially empty, so the subset relation holds initially. Since SC (C,m) is only extended by ANALYZE, it
suffices to consider this rule. The rule maintains the relation since if SC (C,m) is extended by some set sp by the rule,
it follows from the premises that sp⊆ specs(T (TAEi)(m)).

C. Verification of the Example

This section details the verification of the bank account classes from Section 8. In order to verify proof outlines, we
must fix the program logic PL. In this example, we use a standard Hoare logic for sequential statements [AdBO09].

32 F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer

Since formal parameters are read-only in the example, we may use the following rule for analyzing method calls:

(HOARECALL)

{p} m(x) {q}
{p[e/x]} v=m(e) {q[e/x][v/result]}

where x are the formal parameters of the method m. Note that the annotations of a call v=m(e)may be strengthened by
assertions over logical and method local variables. Let X and Z denote the sets of method local variables (including
formal parameters) and logical variables, respectively. If m : (p,q) ∈ reqs(O) is a requirement in some proof outline
O, then O may contain decorated call statements of the form

{p[e/x]∧ c} v=m(e) {q[e/x][v/result]∧ c}
where vars(c)⊆ {X ∪Z }.

Initially in an analysis, the trait and class environments are empty. Let T0 be the trait environment resulting from
the analysis of all the basic traits in Figure 8, so each basic trait is bound to an annotated basic trait expression in T0.
These expressions correspond to the definitions in Figure 8, for example:

T0(TBasicUpd) =
{int bal; /0; void update(nat x){bal=bal-x} 〈(bal = b0,bal = b0− x), /0〉}.

The only proof outlines which need to be supplied during the basic trait analysis are for this update method and for
deposit in TBasicAccount. It is straightforward to provide these proof outlines given the guarantees.

We now consider the analysis of the class CFeeAccount in detail, assuming that the class is analyzed in the
environment C0,T0, where CFeeAccount /∈ C0. Figure 14 shows the application of the proof system to the analysis
of this class, leading to a successful analysis, where C5,T3 are the resulting environments.

In the first step, the class definition leads to the analysis of the trait expression TBasicAccount+CTE fol-
lowed by discharge operations for the contracts of the interface IFeeAccount. The trait expression decom-
poses and as the basic traits are already analyzed, we get to the extend operation for the trait alteration expression
TBasicUpd[update rT bUpdate]. The result is an extended trait environment T1 where a trait expression for
the renaming of TBasicUpd is included in the trait environment. It is not necessary to reanalyze the renamed method,
the specification is generated by renaming the existing method specification in TBasicUpd.

At this point, the discharge operation is at the head of the analysis operation sequence, and is decomposed.
For the method deposit, ANALYZE can be applied and the specification found in TBasicAccount is included in
the class environment, resulting in the class environment C2. Since neither withdraw nor update is specified in
TBasicAccount and TFeeUpd, respectively, the analysis continues with OPENANALYSIS. Proof outlines for these
methods must be provided at the level of their trait declarations by applying INCREMENT and checked by applying
VERIFY. In these proof outlines, the requirement for the call to bUpdate follows from the generated specification of
this method.

Verifying Traits: An Incremental Proof System for Fine-Grained Reuse 33

C5,T3 `
(EMPCLASS)

C5,T3 ` 〈CFeeAccount : ε〉
(EMPDISCHARGE)

C5,T3 ` 〈CFeeAccount : discharge(/0)〉
(ANALYZE) (14)

C4,T3 ` 〈CFeeAccount : analyze(TBasicUpd[update rT bUpdate],bUpdate : (bal == b0,bal == b0− x))〉
(OPENANALYSIS) (13)

C4,T3 ` 〈CFeeAccount : discharge(bUpdate : (bal == b0,bal == b0− x))〉
(ANALYZE) (12)

C3,T3 ` 〈CFeeAccount : analyze(TFeeUpd,update : (bal == b0,bal == b0− x− fee))〉
(VERIFY) (11)

C3,T2 ` verify(TFeeUpd,U 〈(bal == b0,bal == b0− x− fee),bUpdaate : (bal == b0,bal == b0− x)〉) · 〈CFeeAccount : . . .〉
(INCREMENT) (10)

C3,T2 ` 〈CFeeAccount : analyze(TFeeUpd,update : (bal == b0,bal == b0− x− fee))〉
(OPENANALYSIS) (9)

C3,T2 ` 〈CFeeAccount : discharge(update : (bal == b0,bal == b0− x− fee))〉
(ANALYZE) (8)

C2,T2 ` 〈CFeeAccount : analyze(TBasicAccount,withdraw : (bal == b0,bal == b0− x− fee))〉
(VERIFY) (7)

C2,T1 ` verify(TBasicAccount,W 〈(bal == b0,bal == b0− x− fee),update : (bal == b0,bal == b0− x)− fee〉) · 〈CFeeAccount : . . .〉
(INCREMENT) (6)

C2,T1 ` 〈CFeeAccount : analyze(TBasicAccount,withdraw : (bal == b0,bal == b0− x− fee))〉
(OPENANALYSIS) (5)

C2,T1 ` 〈CFeeAccount : discharge(withdraw : (bal == b0,bal == b0− x− fee))〉
(EMPDISCHARGE)

C2,T1 ` 〈CFeeAccount : discharge(/0) ·discharge(withdraw : (bal == b0,bal == b0− x− fee))〉
(ANALYZE) (4)

C1,T1 ` 〈CFeeAccount : analyze(TBasicAccount,deposit : (bal == b0,bal == b0 + x))
· discharge(withdraw : (bal == b0,bal == b0− x− fee))〉

(OPENANALYSIS) (3)
C1,T1 ` 〈CFeeAccount : discharge(deposit : (bal == b0,bal == b0 + x))

· discharge(withdraw : (bal == b0,bal == b0− x− fee))〉
(DECOMP4)

C1,T1 ` 〈CFeeAccount : discharge(deposit : (bal == b0,bal == b0 + x)∪withdraw : (bal == b0,bal == b0− x− fee))〉
(EXTEND) (2)

C1,T0 ` extend(TBasicUpd[update rT bUpdate]) · 〈CFeeAccount : . . .〉
(LOOKUP)

C1,T0 ` extend(TFeeUpd) · extend(TBasicUpd[update rT bUpdate]) · 〈CFeeAccount : . . .〉
(DECOMP3)

C1,T0 ` extend(TFeeUpd + TBasicUpd[update rT bUpdate]) · 〈CFeeAccount : . . .〉
(LOOKUP)

C1,T0 ` extend(TBasicAccount) · extend(CTE) · 〈CFeeAccount : . . .〉
(DECOMP3)

C1,T0 ` extend(TBasicAccount+CTE)
· 〈CFeeAccount : discharge(deposit : (bal == b0,bal == b0 + x)) ·discharge(withdraw : (bal == b0,bal == b0− x− fee))〉

(CLASS) (1)
C0,T0 ` class CFeeAccount implements IFeeAccount by {int bal, nat fee} and TBasicAccount+CTE

Side conditions and auxiliary computations in the proof:

(1) C1 = 〈DC0 [CFeeAccount 7→ 〈IFeeAccount,TBasicAccount+CTE,int bal, nat fee〉],SC0 〉
(2) T1 = T0[TBasicUpd[update rT bUpdate] 7→ mod(T0(TBasicUpd),[update rT bUpdate])]

where mod(T0(TBasicUpd),[update rT bUpdate]) evaluates to:
{int bal; /0; void bUpdate(nat x){bal==bal-x} 〈(bal == b0,bal == b0− x), /0〉}

(3) TBasicAccount ∈ impl(DC1 (CFeeAccount))∧deposit ∈T1(TBasicAccount)
(4) 〈(bal == b0,bal == b0 + x), /0〉 ∈ specs(T1(TBasicAccount)(deposit))

C2 = 〈DC1 ,SC1 [(CFeeAccount,deposit) 7→ 〈(bal == b0,bal == b0 + x), /0〉]〉
(5) TBasicAccount ∈ impl(DC2 (CFeeAccount))∧withdraw ∈T1(TBasicAccount)
(6) W= void withdraw(nat x){update(x)}
(7) T2 = T1[TBasicAccount 7→

addSpec(T1(TBasicAccount),withdraw,〈(bal == b0,bal == b0− x− fee),update : (bal == b0,bal == b0− x− fee)〉)]
(8) 〈(bal == b0,bal == b0− x− fee),update : (bal == b0,bal == b0− x− fee)〉 ∈ specs(T2(TBasicAccount)(withdraw))

C3 = 〈DC2 ,SC2 [(CFeeAccount,withdraw) 7→ 〈(bal == b0,bal == b0− x− fee),update : (bal == b0,bal == b0− x− fee)〉]〉
(9) TFeeUpd ∈ impl(DC3 (CFeeAccount))∧update ∈T2(TFeeUpd)
(10) U= void update(nat x){bUpdate(x+fee)}
(11) T3 = T2[TFeeUpd 7→ addSpec(T2(TFeeUpd),update,〈(bal == b0,bal == b0− x− fee),bUpdate : (bal == b0,bal == b0− x)〉]

and the proof outline follows directly by substituting formal parameters in the requirement according to rule HOARECALL
(12) 〈(bal == b0,bal == b0− x− fee),bUupdate : (bal == b0,bal == b0− x)〉 ∈ specs(T3(TFeeUpd)(update))

C4 = 〈DC3 ,SC3 [(CFeeAccount,update) 7→ 〈(bal == b0,bal == b0− x− fee),bUpdate : (bal == b0,bal == b0− x)〉]〉
(13) TBasicUpd[update rT bUpdate] ∈ impl(DC4 (CFeeAccount))∧bUpdate ∈T3(TBasicUpd[update rT bUpdate])
(14) 〈(bal == b0,bal == b0− x), /0〉 ∈ specs(T3(TBasicUpd[update rT bUpdate])(update))

C5 = 〈DC4 ,SC4 [(CFeeAccount,bUpdate) 7→ 〈(bal == b0,bal == b0− x), /0〉]〉

Fig. 14. Analysis details for the class CFeeAccount. To simplify the presentation, side conditions and auxiliary computations for the differ-
ent rule applications are given as notes, CTE abbreviates the expression TFeeUpd + TBasicUpd[update rT bUpdate], rT abbreviates
renameTo, and 〈CFeeAccount : . . .〉 denotes that the class contains the same operations as found on the line below.

