6 research outputs found

    The complexity of theorem proving in autoepistemic logic

    Get PDF
    Autoepistemic logic is one of the most successful formalisms for nonmonotonic reasoning. In this paper we provide a proof-theoretic analysis of sequent calculi for credulous and sceptical reasoning in propositional autoepistemic logic, introduced by Bonatti and Olivetti [5]. We show that the calculus for credulous reasoning obeys almost the same bounds on the proof size as Gentzen's system LK. Hence proving lower bounds for credulous reasoning will be as hard as proving lower bounds for LK. This contrasts with the situation in sceptical autoepistemic reasoning where we obtain an exponential lower bound to the proof length in Bonatti and Olivetti's calculus

    The complexity of theorem proving in circumscription and minimal entailment

    Get PDF
    We provide the first comprehensive proof-complexity analysis of different proof systems for propositional circumscription. In particular, we investigate two sequent-style calculi: MLK defined by Olivetti [28] and CIRC introduced by Bonatti and Olivetti [8], and the tableaux calculus NTAB suggested by Niemelä [26]. In our analysis we obtain exponential lower bounds for the proof size in NTAB and CIRC and show a polynomial simulation of CIRC by MLK. This yields a chain NTAB < CIRC < MLK of proof systems for circumscription of strictly increasing strength with respect to lengths of proofs

    Proof Complexity of Modal Resolution Systems

    Get PDF
    In this thesis we initiate the study of the proof complexity of modal resolution systems. To our knowledge there is no previous work on the proof complexity of such systems. This is in sharp contrast to the situation for propositional logic where resolution is the most studied proof system, in part due to its close links with satisfiability solving. We focus primarily on the proof complexity of two recently proposed modal resolution systems of Nalon, Hustadt and Dixon, one of which forms the basis of an existing modal theorem prover. We begin by showing that not only are these two proof systems equivalent in terms of their proof complexity, they are also equivalent to a number of natural refinements. We further compare the proof complexity of these systems with an older, more complicated modal resolution system of Enjalbert and Farinas del Cerro, showing that this older system p-simulates the more streamlined calculi. We then investigate lower bound techniques for modal resolution. Here we see that whilst some propositional lower bound techniques (i.e. feasible interpolation) can be lifted to the modal setting with only minor modifications, other propositional techniques (i.e. size-width) fail completely. We further develop a new lower bound technique for modal resolution using Prover-Delayer games. This technique can be used to establish "genuine" modal lower bounds (i.e lower bounds on the number of modal inferences) for the size of tree-like modal resolution proofs. We apply this technique to a new family of modal formulas, called the modal pigeonhole principle to demonstrate that these formulas require exponential size modal resolution proofs. Finally we compare the proof complexity of tree-like modal resolution systems with that of modal Frege systems, using our modal pigeonhole principle to obtain a "genuinely" modal separation between them

    Proof Complexity of Non-classical Logics.

    No full text
    Proof complexity is an interdisciplinary area of research utilizing techniques from logic, complexity, and combinatorics towards the main aim of understanding the complexity of theorem proving procedures. Traditionally, propositional proofs have been the main object of investigation in proof complexity. Due their richer expressivity and numerous applications within computer science, also non-classical logics have been intensively studied from a proof complexity perspective in the last decade, and a number of impressive results have been obtained. In this paper we give the rst survey of this eld concentrating on recent developments in proof complexity of non-classical logics
    corecore