1,307 research outputs found

    A Proof Checking View of Parameterized Complexity

    Full text link
    The PCP Theorem is one of the most stunning results in computational complexity theory, a culmination of a series of results regarding proof checking it exposes some deep structure of computational problems. As a surprising side-effect, it also gives strong non-approximability results. In this paper we initiate the study of proof checking within the scope of Parameterized Complexity. In particular we adapt and extend the PCP[n log log n, n log log n] result of Feige et al. to several parameterized classes, and discuss some corollaries

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    When are Stochastic Transition Systems Tameable?

    Full text link
    A decade ago, Abdulla, Ben Henda and Mayr introduced the elegant concept of decisiveness for denumerable Markov chains [1]. Roughly speaking, decisiveness allows one to lift most good properties from finite Markov chains to denumerable ones, and therefore to adapt existing verification algorithms to infinite-state models. Decisive Markov chains however do not encompass stochastic real-time systems, and general stochastic transition systems (STSs for short) are needed. In this article, we provide a framework to perform both the qualitative and the quantitative analysis of STSs. First, we define various notions of decisiveness (inherited from [1]), notions of fairness and of attractors for STSs, and make explicit the relationships between them. Then, we define a notion of abstraction, together with natural concepts of soundness and completeness, and we give general transfer properties, which will be central to several verification algorithms on STSs. We further design a generic construction which will be useful for the analysis of {\omega}-regular properties, when a finite attractor exists, either in the system (if it is denumerable), or in a sound denumerable abstraction of the system. We next provide algorithms for qualitative model-checking, and generic approximation procedures for quantitative model-checking. Finally, we instantiate our framework with stochastic timed automata (STA), generalized semi-Markov processes (GSMPs) and stochastic time Petri nets (STPNs), three models combining dense-time and probabilities. This allows us to derive decidability and approximability results for the verification of these models. Some of these results were known from the literature, but our generic approach permits to view them in a unified framework, and to obtain them with less effort. We also derive interesting new approximability results for STA, GSMPs and STPNs.Comment: 77 page

    Independent Set, Induced Matching, and Pricing: Connections and Tight (Subexponential Time) Approximation Hardnesses

    Full text link
    We present a series of almost settled inapproximability results for three fundamental problems. The first in our series is the subexponential-time inapproximability of the maximum independent set problem, a question studied in the area of parameterized complexity. The second is the hardness of approximating the maximum induced matching problem on bounded-degree bipartite graphs. The last in our series is the tight hardness of approximating the k-hypergraph pricing problem, a fundamental problem arising from the area of algorithmic game theory. In particular, assuming the Exponential Time Hypothesis, our two main results are: - For any r larger than some constant, any r-approximation algorithm for the maximum independent set problem must run in at least 2^{n^{1-\epsilon}/r^{1+\epsilon}} time. This nearly matches the upper bound of 2^{n/r} (Cygan et al., 2008). It also improves some hardness results in the domain of parameterized complexity (e.g., Escoffier et al., 2012 and Chitnis et al., 2013) - For any k larger than some constant, there is no polynomial time min (k^{1-\epsilon}, n^{1/2-\epsilon})-approximation algorithm for the k-hypergraph pricing problem, where n is the number of vertices in an input graph. This almost matches the upper bound of min (O(k), \tilde O(\sqrt{n})) (by Balcan and Blum, 2007 and an algorithm in this paper). We note an interesting fact that, in contrast to n^{1/2-\epsilon} hardness for polynomial-time algorithms, the k-hypergraph pricing problem admits n^{\delta} approximation for any \delta >0 in quasi-polynomial time. This puts this problem in a rare approximability class in which approximability thresholds can be improved significantly by allowing algorithms to run in quasi-polynomial time.Comment: The full version of FOCS 201
    • …
    corecore