20 research outputs found

    CT colonography: Inverse-consistent symmetric registration of prone and supine inner colon surfaces

    Get PDF
    CT colonography interpretation is difficult and time-consuming because fecal residue or fluid can mimic or obscure polyps, leading to diagnostic errors. To compensate for this, it is normal practice to obtain CT data with the patient in prone and supine positions. Repositioning redistributes fecal residue and colonic gas; fecal residue tends to move, while fixed mural pathology does not. The cornerstone of competent interpretation is the matching of corresponding endoluminal locations between prone and supine acquisitions. Robust and accurate automated registration between acquisitions should lead to faster and more accurate detection of colorectal cancer and polyps. Any directional bias when registering the colonic surfaces could lead to incorrect anatomical correspondence resulting in reader error. We aim to reduce directional bias and so increase robustness by adapting a cylindrical registration algorithm to penalize inverse-consistency error, using a symmetric optimization. Using 17 validation cases, the mean inverse-consistency error was reduced significantly by 86%, from 3.3 mm to 0.45 mm. Furthermore, we show improved alignment of the prone and supine colonic surfaces, evidenced by a reduction in the mean-of-squared-differences by 43% overall. Mean registration error, measured at a sparse set of manually selected reference points, remained at the same level as the non-symmetric method (no significant differences). Our results suggest that the inverse-consistent symmetric algorithm performs more robustly than non-symmetric implementation of B-spline registration

    Feature extraction to aid disease detection and assessment of disease progression in CT and MR colonography

    Get PDF
    Computed tomographic colonography (CTC) is a technique employed to examine the whole colon for cancers and premalignant adenomas (polyps). Oral preparation is taken to fully cleanse the colon, and gas insufflation maximises the attenuation contrast between the enoluminal colon surface and the lumen. The procedure is performed routinely with the patient both prone and supine to redistribute gas and residue. This helps to differentiate fixed colonic pathology from mobile faecal residue and also helps discover pathology occluded by retained fluid or luminal collapse. Matching corresponding endoluminal surface locations with the patient in the prone and supine positions is therefore an essential aspect of interpretation by radiologists; however, interpretation can be difficult and time consuming due to the considerable colonic deformations that occur during repositioning. Hence, a method for automated registration has the potential to improve efficiency and diagnostic accuracy. I propose a novel method to establish correspondence between prone and supine CT colonography acquisitions automatically. The problem is first simplified by detecting haustral folds which are elongated ridgelike endoluminal structures and can be identified by curvature based measurements. These are subsequently matched using appearance based features, and their relative geometric relationships. It is shown that these matches can be used to find correspondence along the full length of the colon, but may also be used in conjunction with other registration methods to achieve a more robust and accurate result, explicitly addressing the problem of colonic collapse. The potential clinical value of this method has been assessed in an external clinical validation, and the application to follow-up CTC surveillance has been investigated. MRI has recently been applied as a tool to quantitatively evaluate the therapeutic response to therapy in patients with Crohn's disease, and is the preferred choice for repeated imaging. A primary biomarker for this evaluation is the measurement of variations of bowel wall thickness on changing from the active phase of the disease to remission; however, a poor level of interobserver agreement of measured thickness is reported and therefore a system for accurate, robust and reproducible measurements is desirable. I propose a novel method which will automatically track sections of colon, by estimating the positions of elliptical cross sections. Subsequently, estimation of the positions of the inner and outer bowel walls are made based on image gradient information and therefore a thickness measurement value can be extracted

    Registration of prone and supine CT colonography images and its clinical application

    Get PDF
    Computed tomographic (CT) colonography is a technique for detecting bowel cancer and potentially precancerous polyps. CT imaging is performed on the cleansed and insufflated bowel in order to produce a virtual endoluminal representation similar to optical colonoscopy. Because fluids and stool can mimic pathology, images are acquired with the patient in both prone and supine positions. Radiologists then match endoluminal locations visually between the two acquisitions in order to determine whether pathology is real or not. This process is hindered by the fact that the colon can undergo considerable deformation between acquisitions. Robust and accurate automated registration between prone and supine data acquisitions is therefore pivotal for medical interpretation, but a challenging problem. The method proposed in this thesis reduces the complexity of the registration task of aligning the prone and supine CT colonography acquisitions. This is done by utilising cylindrical representations of the colonic surface which reflect the colon's specific anatomy. Automated alignment in the cylindrical domain is achieved by non-rigid image registration using surface curvatures, applicable even when cases exhibit local luminal collapses. It is furthermore shown that landmark matches for initialisation improve the registration's accuracy and robustness. Additional performance improvements are achieved by symmetric and inverse-consistent registration and iteratively deforming the surface in order to compensate for differences in distension and bowel preparation. Manually identified reference points in human data and fiducial markers in a porcine phantom are used to validate the registration accuracy. The potential clinical impact of the method has been evaluated using data that reflects clinical practise. Furthermore, correspondence between follow-up CT colonography acquisitions is established in order to facilitate the clinical need to investigate polyp growth over time. Accurate registration has the potential to both improve the diagnostic process and decrease the radiologist's interpretation time. Furthermore, its result could be integrated into algorithms for improved computer-aided detection of colonic polyps

    Facilitating Colorectal Cancer Diagnosis with Computed Tomographic Colonography

    Get PDF
    Computed tomographic colonography (CTC) is a diagnostic technique involving helical volume acquisition of the cleansed, distended colorectum to detect colorectal cancer or potentially premalignant polyps. This Thesis summarises the evidence base, identifies areas in need of further research, quantifies sources of bias and presents novel techniques to facilitate colorectal cancer diagnosis using CTC. CTC literature is reviewed to justify the rationale for current implementation and to identify fruitful areas for research. This confirms excellent diagnostic performance can be attained providing CTC is interpreted by trained, experienced observers employing state-of-the-art implementation. The technique is superior to barium enema and consequently, it has been embraced by radiologists, clinicians and health policy-makers. Factors influencing generalisability of CTC research are investigated, firstly with a survey of European educational workshop participants which revealed limited CTC experience and training, followed by a systematic review exploring bias in research studies of diagnostic test accuracy which established that studies focussing on these aspects were lacking. Experiments to address these sources of bias are presented, using novel methodology: Conjoint analysis is used to ascertain patients‘ and clinicians’ attitudes to false-positive screening diagnoses, showing that both groups overwhelmingly value sensitivity over specificity. The results inform a weighted statistical analysis for CAD which is applied to the results of two previous studies showing the incremental benefit is significantly higher for novices than experienced readers. We have employed eye-tracking technology to establish the visual search patterns of observers reading CTC, demonstrated feasibility and developed metrics for analysis. We also describe development and validation of computer software to register prone and supine endoluminal surface locations demonstrating accurate matching of corresponding points when applied to a phantom and a generalisable, publically available, CTC database. Finally, areas in need of future development are suggested

    Evaluation of an MRI-based screening pathway for prostate cancer

    Get PDF
    In recent years there has been a wealth of debate regarding prostate cancer screening, with a concurrent increase in new imaging techniques for prostate cancer diagnosis. Imaging has been the technique of choice in lung and breast cancer screening programmes but has not been explored for prostate cancer screening. Herein, this thesis explores the role of magnetic resonance imaging (MRI) as a new approach to screen for prostate cancer. Following an introduction to the current screening landscape, my thesis focuses on the development and validation of a fast MRI, known as a prostagram, that could serve as a viable image-based screening test. Evaluation of this new technique is performed within a prospective, population-based, blinded, cohort study which was conducted at seven primary care practices and two imaging centres. A diverse array of performance characteristics of fast MRI are compared to PSA. These encompass biopsy rates, cancer detection rates, diagnostic accuracy and patient reported experience measures. The second half of this thesis focuses on further optimising the fast MRI protocol for screening and exploring methods of integrating it into an alternative screening pathway. The outcomes point towards a pathway which combines a low threshold PSA and a fast MRI as yielding a more acceptable balance between benefits and harms. This is followed by the development of a risk tool to address the challenges of equivocal MRI lesions. Overall my thesis provides a balanced evaluation of fast MRI as a new screening test and the final chapter highlights outstanding challenges that must be addressed for fast MRI to progress as a legitimate screening modality. There is a requirement for all new screening tests to be evaluated in robust randomised controlled trials and the thesis concludes by setting out a phased research framework for fast MRI to enable a full evaluation over the next decade.Open Acces

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces
    corecore