101 research outputs found

    Prokineticin 2 Regulates the Electrical Activity of Rat Suprachiasmatic Nuclei Neurons

    Get PDF
    Neuropeptide signaling plays roles in coordinating cellular activities and maintaining robust oscillations within the mammalian suprachiasmatic nucleus (SCN). Prokineticin2 (PK2) is a signaling molecule from the SCN and involves in the generation of circadian locomotor activity. Prokineticin receptor 2 (PKR2), a receptor for PK2, has been shown to be expressed in the SCN. However, very little is known about the cellular action of PK2 within the SCN. In the present study, we investigated the effect of PK2 on spontaneous firing and miniature inhibitory postsynaptic currents (mIPSCs) using whole cell patch-clamp recording in the SCN slices. PK2 dose-dependently increased spontaneous firing rates in most neurons from the dorsal SCN. PK2 acted postsynaptically to reduce γ-aminobutyric acid (GABA)-ergic function within the SCN, and PK2 reduced the amplitude but not frequency of mIPSCs. Furthermore, PK2 also suppressed exogenous GABA-induced currents. And the inhibitory effect of PK2 required PKC activation in the postsynaptic cells. Our data suggest that PK2 could alter cellular activities within the SCN and may influence behavioral and physiological rhythms

    Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.M.D.C.B is supported by the University ofExeter Medical School (UEMS). C.O.D’s work was partially supported bythe National Science Foundation under grant nos. DMS-1412877 and DMS-155237, and the U.S. Army Research Laboratory and the U.S. ArmyResearch Office under Grant No. W911NF-16-1-0584

    Neurotransmitters of the suprachiasmatic nuclei

    Get PDF
    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working

    Overexpression of Prokineticin 2 in Transgenic Mice Leads to Reduced Circadian Behavioral Rhythmicity and Altered Molecular Rhythms in the Suprachiasmatic Clock

    Get PDF
    In mammals, the master pacemaker driving circadian rhythms is thought to reside in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. A clear view of molecular clock mechanisms within the SCN neurons has been elucidated. In contrast, much less is known about the output mechanism by which the SCN circadian pacemaker sends timing information for eventual control of physiological and behavioral rhythms. Two secreted molecules, prokineticin 2 (PK2) and vasopressin, that are encoded by respective clock-controlled genes, have been indicated as candidate SCN output molecules. Several lines of evidence have emerged that support the role of PK2 as an output signal for the SCN circadian clock, including the reduced circadian rhythms in mice that are deficient in PK2 or its receptor, PKR2. In the current study, transgenic mice with the overexpression of PK2 have been generated. These transgenic mice displayed reduced oscillation of the PK2 expression in the SCN and decreased amplitude of circadian locomotor rhythm, supporting the important signaling role of PK2 in the regulation of circadian rhythms. Altered molecular rhythms were also observed in the SCN in the transgenic mice, indicating that PK2 signaling also regulates the operation of core clockwork. This conclusion is consistent with recent reports showing the likely signaling role of PK2 from the intrinsically photosensitive retinal ganglion cells to SCN neurons. Thus, PK2 signaling plays roles in both the input and the output pathways of the SCN circadian clock

    Biological Rhythms Workshop IB: Neurophysiology of SCN Pacemaker Function

    Get PDF
    Pacemakers are functional units capable of generating oscillations that synchronize downstream rhythms. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is a circadian pacemaker composed of individual neurons that intrinsically express a near 24-hour rhythm in gene expression. Rhythmic gene expression is tightly coupled to a rhythm in spontaneous firing rate via intrinsic daily regulation of potassium current. Recent progress in the field indicates that SCN pacemaking is a specialized property that emerges from intrinsic features of single cells, structural connectivity among cells, and activity dynamics within the SCN. The focus of this chapter is on how Nature built a functional pacemaker from many individual oscillators that is capable of coordinating the daily timing of essential brain and physiological processes

    Circadian rhythms and hormonal homeostasis: Pathophysiological implications

    Get PDF
    Over recent years, a deeper comprehension of the molecular mechanisms that control biological clocks and circadian rhythms has been achieved. In fact, many studies have contributed to unravelling the importance of the molecular clock for the regulation of our physiology, including hormonal and metabolic homeostasis. Here we will review the structure, organisation and molecular machinery that make our circadian clock work, and its relevance for the proper functioning of physiological processes. We will also describe the interconnections between circadian rhythms and endocrine homeostasis, as well as the underlying consequences that circadian dysregulations might have in the development of several pathologic affections. Finally, we will discuss how a better knowledge of such relationships might prove helpful in designing new therapeutic approaches for endocrine and metabolic diseases

    Light Dependent Regulation of Sleep/Wake States by Prokineticin 2 in Larval Zebrafish

    Get PDF
    Sleep is an evolutionarily conserved behavior and essential to survival. The classic two process model of sleep regulation proposes that sleep results from the interaction between circadian and homeostatic processes, but the details remain elusive. Most sleep research is performed using nocturnal rodents, and diurnal vertebrates are under-represented. It is unclear whether circadian regulatory mechanisms of sleep in nocturnal animals can be directly translated into diurnal animals. In this thesis, I first briefly describe sleep behavior and the two process model of sleep regulation, focusing on the circadian process, and then discuss the advantages of using larval zebrafish as a model to study sleep behavior in diurnal vertebrates. In Chapter 2, I characterize the role of Prokineticin 2, a proposed circadian output factor in nocturnal animals, in sleep/wake regulation in larval zebrafish. I show that, similar to nocturnal rodents, Prok2 is both necessary for daytime sleep/wake behavior and sufficient to modulate sleep/wake states in a light dependent manner. However, unlike nocturnal rodents and similar to humans, Prok2 is not required for maintaining circadian rhythmicity in larval zebrafish after removing external light cue. This result demonstrates the potential functional difference of circadian output factors in different chronotypes, and establishes larval zebrafish as an alternative model for studying circadian regulation of sleep and possibly other behaviors in humans. In Chapter 3, I describe the adaptation and development of TRP channels to manipulate neuronal activity in larval zebrafish, in an effort to expand the existing repertoire of genetic tools for studying behavior in zebrafish. I show that three TRP channels, TRPV1, TRPM8 and TRPA1, can inducibly activate specific populations of neurons in larval zebrafish by using their appropriate agonists. At high agonist concentrations, TRPV1, can rapidly induce cell ablation. Adaptation of TRP channels for use in larval zebrafish expands the variety of behavioral experiments and combinatorial manipulation of neuronal activity that can be performed in zebrafish. In summary, this work deepens our understanding of sleep regulation, establishes larval zebrafish as an appropriate model for studying circadian regulation of sleep in diurnal vertebrates, and presents novel genetic tools for studying behavior in larval zebrafish

    Circuit development in the master clock network of mammals

    Get PDF
    Daily rhythms are generated by the circadian timekeeping system, which is orchestrated by the master circadian clock in the suprachiasmatic nucleus (SCN) of mammals. Circadian timekeeping is endogenous and does not require exposure to external cues during development. Nevertheless, the circadian system is not fully formed at birth in many mammalian species and it is important to understand how SCN development can affect the function of the circadian system in adulthood. The purpose of the current review is to discuss the ontogeny of cellular and circuit function in the SCN, with a focus on work performed in model rodent species (i.e., mouse, rat, and hamster). Particular emphasis is placed on the spatial and temporal patterns of SCN development that may contribute to the function of the master clock during adulthood. Additional work aimed at decoding the mechanisms that guide circadian development is expected to provide a solid foundation upon which to better understand the sources and factors contributing to aberrant maturation of clock function

    Collective Timekeeping Among Cells of the Master Circadian Clock

    Get PDF
    The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional–translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network
    corecore