70 research outputs found

    Query Profiler Versus Cache for Skyline Computation

    Get PDF
    A skyline query is multi preference user query which generates the best objects from a multi attributed dataset. Skyline computation in an optimum time becomes a real challenge when the number of user preference are large and size of the dataset is also huge. When such a big data gets queried at large, response time optimization is possible through maintenance of the metadata about the pre-executed skyline queries. We have earlier proposed, a novel structure namely �Query Profiler� which preserves such metadata about the historical queries, raised against a dataset. Also as the dataset gets queried at large, the dimensions of user queries often overlap and queries get correlated. Such correlations in user queries and the availability of metadata about the earlier queries, combined together speed up the computation time and the optimization of the response time of the further skyline computation becomes possible. In this paper, we assert the efficacy of the Query Profiler by comparing its performance with the parallel techniques which utilize cache mechanism for optimization of the response time. We also present the experimental results which assert the efficacy of the proposed technique

    Reporting Skyline on Uncertain Dimension with Query Interval

    Get PDF
    Naturally, users sometimes specify their preference in an imprecise way (i.e. query with an interval/range). To report results that satisfy the imprecise query as well as interesting would be easy on dataset with atomic values. The challenge is when the dataset being queried consists of both atomic values as well as continuous range of values. For a set of objects with uncertain dimension and given a query interval

    I/O-Efficient Dynamic Planar Range Skyline Queries

    Get PDF
    We present the first fully dynamic worst case I/O-efficient data structures that support planar orthogonal \textit{3-sided range skyline reporting queries} in \bigO (\log_{2B^\epsilon} n + \frac{t}{B^{1-\epsilon}}) I/Os and updates in \bigO (\log_{2B^\epsilon} n) I/Os, using \bigO (\frac{n}{B^{1-\epsilon}}) blocks of space, for nn input planar points, tt reported points, and parameter 0ϵ10 \leq \epsilon \leq 1. We obtain the result by extending Sundar's priority queues with attrition to support the operations \textsc{DeleteMin} and \textsc{CatenateAndAttrite} in \bigO (1) worst case I/Os, and in \bigO(1/B) amortized I/Os given that a constant number of blocks is already loaded in main memory. Finally, we show that any pointer-based static data structure that supports \textit{dominated maxima reporting queries}, namely the difficult special case of 4-sided skyline queries, in \bigO(\log^{\bigO(1)}n +t) worst case time must occupy Ω(nlognloglogn)\Omega(n \frac{\log n}{\log \log n}) space, by adapting a similar lower bounding argument for planar 4-sided range reporting queries.Comment: Submitted to SODA 201

    A Rule-based Skyline Computation over a dynamic database

    Get PDF
    Skyline query which relies on the notion of Pareto dominance filters the data items from a database by ensuring only those data items that are not worse than any others are selected as skylines. However, the dynamic nature of databases in which their states and/or structures change throughout their lifetime to incorporate the current and latest information of database applications, requires a new set of skylines to be derived. Blindly computing skylines on the new state/structure of a database is inefficient, as not all the data items are affected by the changes. Hence, this paper proposes a rule-based approach in tackling the above issue with the main aim at avoiding unnecessary skyline computations. Based on the type of operation that changes the state/structure of a database, i.e. insert/delete/update a data item(s) or add/remove a dimension(s), a set of rules are defined. Besides, the prominent dominance relationships when pairwise comparisons are performed are retained; which are then utilised in the process of computing a new set of skylines. Several analyses have been conducted to evaluate the performance and prove the efficiency of our proposed solution

    CSD: Discriminance with Conic Section for Improving Reverse k Nearest Neighbors Queries

    Full text link
    The reverse kk nearest neighbor (RkkNN) query finds all points that have the query point as one of their kk nearest neighbors (kkNN), where the kkNN query finds the kk closest points to its query point. Based on the characteristics of conic section, we propose a discriminance, named CSD (Conic Section Discriminance), to determine points whether belong to the RkkNN set without issuing any queries with non-constant computational complexity. By using CSD, we also implement an efficient RkkNN algorithm CSD-RkkNN with a computational complexity at O(k1.5logk)O(k^{1.5}\cdot log\,k). The comparative experiments are conducted between CSD-RkkNN and other two state-of-the-art RkNN algorithms, SLICE and VR-RkkNN. The experimental results indicate that the efficiency of CSD-RkkNN is significantly higher than its competitors
    corecore