13 research outputs found

    Geometric data for testing implementations of point reduction algorithms : case study using Mapshaper v 0.2.28 and previous versions

    Get PDF
    There are several open source and commercial implementations of the Visvalingam algorithm for line generalisation. The algorithm provides scope for implementation-specific interpretations, with different outcomes. This is inevitable and sometimes necessary and, they do not imply that an implementation is flawed. The only restriction is that the output must not be so inconsistent with the intent of the algorithm that it becomes inappropriate. The aim of this paper is to place the algorithm within the literature, and demonstrate the value of the teragon-test for evaluating the appropriateness of implementations; Mapshaper v 0.2.28 and earlier versions are used for illustrative purposes. Data pertaining to natural features, such as coastlines, are insufficient for establishing whether deviations in output are significant. The teragon-test produced an unexpected loss of symmetry from both the Visvalingam and Douglas-Peucker options, making the tested versions unsuitable for some applications outside of cartography. This paper describes the causes, and discusses their implications. Mapshaper 0.3.17 passes the teragon test. Other developers and users should check their implementations using contrived geometric data, such as the teragon data provided in this paper, especially when the source code is not available. The teragon-test is also useful for evaluating other point reduction algorithms

    Variable-resolution Compression of Vector Data

    Get PDF
    The compression of spatial data is a promising solution to reduce the space of data storage and to decrease the transmission time of spatial data over the Internet. This paper proposes a new method for variable-resolution compression of vector data. Three key steps are encompassed in the proposed method, namely, the simplification of vector data via the elimination of vertices, the compression of removed vertices, and the decoding of the compressed vector data. The proposed compression method was implemented and applied to compress vector data to investigate its performance in terms of the compression ratio, distortions of geometric shapes. The results show that the proposed method provides a feasible and efficient solution for the compression of vector data, is able to achieve good compression ratios and maintains the main shape characteristics of the spatial objects within the compressed vector dat

    A Note on Linear Time Algorithms for Maximum Error Histograms

    Get PDF
    Histograms and Wavelet synopses provide useful tools in query optimization and approximate query answering. Traditional histogram construction algorithms, e.g., V-Optimal, use error measures which are the sums of a suitable function, e.g., square, of the error at each point. Although the best-known algorithms for solving these problems run in quadratic time, a sequence of results have given us a linear time approximation scheme for these algorithms. In recent years, there have been many emerging applications where we are interested in measuring the maximum (absolute or relative) error at a point. We show that this problem is fundamentally different from the other traditional nonl∞ error measures and provide an optimal algorithm that runs in linear time for a small number of buckets. We also present results which work for arbitrary weighted maximum error measures

    06101 Abstracts Collection -- Spatial Data:mining, processing and communicating

    Get PDF
    From 05.03.06 to 10.03.06, the Dagstuhl Seminar 06101 ``Spatial Data: mining, processing and communicating\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Tight results for clustering and summarizing data streams

    Get PDF
    In this paper we investigate algorithms and lower bounds for summarization problems over a single pass data stream. In particular we focus on histogram construction and K-center clustering. We provide a simple framework that improves upon all previous algorithms on these problems in either the space bound, the approximation factor or the running time. The framework uses a notion of ``streamstrapping\u27\u27 where summaries created for the initial prefixes of the data are used to develop better approximation algorithms. We also prove the first non-trivial lower bounds for these problems. We show that the stricter requirement that if an algorithm accurately approximates the error of every bucket or every cluster produced by it, then these upper bounds are almost the best possible. This property of accurate estimation is true of all known upper bounds on these problems

    Application of Spatial Concepts to Genome Data

    Get PDF
    This project will investigate the application of geographic information science concepts and methods to the modeling and analysis of genome data. The primary objective of the research is to develop a data model for genomes that supports the graphical exploration of the higher order spatial arrangement of genome features through spatial queries and spatial data analysis tools. The spatial genome model formalizes topological and order relationships among genome features (before, after, overlap), uses metric properties to refine spatial topologies, and includes representations of features that have uncertain metric properties. The genome spatial model enhances the integrative and comparative potential of genome data by providing the foundation for more powerful spatial reasoning and inferences than can be achieved by data models that incorporate only a small subset of possible temporal-spatial relationships among genome features (e.g. order and distance). The research represents a logical extension from current feature by feature analytical approaches of genome studies to one that allows biologists to ask questions about the contextual and organizational significance of the spatial arrangement of genome features. These functional capabilities should, in turn, aid in the automation of repetitive analytical tasks associated with the mapping of genome features and drive the discovery of biologically significant aspects of genome organization and function

    Maine Perspective, v 11, i 7

    Get PDF
    The Maine Perspective, a publication for the University of Maine, was a campus newsletter produced by the Department of Public Affairs which eventually transformed into the Division of Marketing and Communication. Regular columns included the UM Calendar, Ongoing Events, People in Perspective, Look Who\u27s on Campus, In Focus, and Along the Mall. The weekly newsletter also included position openings on campus as well as classified ads. Included in this issue is the announcement of UMaine receiving reaccreditation; the reorganization of Student Affairs; the launch of an Adopt-a-Building capital campaign; research of rockweed by graduate student Jill Fogley; and a $330,000 grant received by Huijie Xue to study the wintertime air-sea interaction off the East Coast of North America

    Mobile Map Browsers: Anticipated User Interaction for Data Pre-fetching

    Get PDF
    When browsing a graphical display of geospatial data on mobile devices, users typically change the displayed maps by panning, zooming in and out, or rotating the device. Limited storage space on mobile devices and slow wireless communications, however, impede the performance of these operations. To overcome the bottleneck that all map data to be displayed on the mobile device need to be downloaded on demand, this thesis investigates how anticipated user interactions affect intelligent pre-fetching so that an on-demand download session is extended incrementally. User interaction is defined as a set of map operations that each have corresponding effects on the spatial dataset required to generate the display. By anticipating user interaction based on past behavior and intuition on when waiting for data is acceptable, it is possible to device a set of strategies to better prepare the device with data for future use. Users that engage with interactive map displays for a variety of tasks, whether it be navigation, information browsing, or data collection, experience a dynamic display to accomplish their goal. With vehicular navigation, the display might update itself as a result of a GPS data stream reflecting movement through space. This movement is not random, especially as is the case of moving vehicles and, therefore, this thesis suggests that mobile map data could be pre-fetched in order to improve usability. Pre-fetching memory-demanding spatial data can benefit usability in several ways, but in particular it can (1) reduce latency when downloading data over wireless connections and (2) better prepare a device for situations where wireless internet connectivity is weak or intermittent. This thesis investigates mobile map caching and devises an algorithm for pre-fetching data on behalf of the application user. Two primary models are compared: isotropic (direction-independent) and anisotropic (direction-dependent) pre-fetching. A prefetching simulation is parameterized with many trajectories that vary in complexity (a metric of direction change within the trajectory) and it is shown that, although anisotropic pre-fetching typically results in a better pre-fetching accuracy, it is not ideal for all scenarios. This thesis suggests a combination of models to accommodate the significant variation in moving object trajectories. In addition, other methods for pre-fetching spatial data are proposed for future research

    Variable-resolution Compression of Vector Data

    Full text link
    The compression of spatial data is a promising solution to reduce the space of data storage and to decrease the transmission time of spatial data over the Internet. This paper proposes a new method for variable-resolution compression of vector data. Three key steps are encompassed in the proposed method, namely, the simplification of vector data via the elimination of vertices, the compression of removed vertices, and the decoding of the compressed vector data. The proposed compression method was implemented and applied to compress vector data to investigate its performance in terms of the compression ratio, distortions of geometric shapes. The results show that the proposed method provides a feasible and efficient solution for the compression of vector data, is able to achieve good compression ratios and maintains the main shape characteristics of the spatial objects within the compressed vector data

    Ontology-Driven Geographic Information Systems

    Get PDF
    Information integration is the combination of different types of information in a framework so that it can be queried, retrieved, and manipulated. Integration of geographic data has gained in importance because of the new possibilities arising from the interconnected world and the increasing availability of geographic information. Many times the need for information is so pressing that it does not matter if some details are lost, as long as integration is achieved. To integrate information across computerized information systems it is necessary first to have explicit formalizations of the mental concepts that people have about the real world. Furthermore, these concepts need to be grouped by communities in order to capture the basic agreements that exist within different communities. The explicit formalization of the mental models within a community is an ontology. This thesis introduces a framework for the integration of geographic information. We use ontologies as the foundation of this framework. By integrating ontologies that are linked to sources of geographic information we allow for the integration of geographic information based primarily on its meaning. Since the integration may occurs across different levels, we also create the basic mechanisms for enabling integration across different levels of detail. The use of an ontology, translated into an active, information-system component, leads Ontology-Driven Geographic Information Systems. The results of this thesis show that a model that incorporates hierarchies and roles has the potential to integrate more information than models that do not incorporate these concepts. We developed a methodology to evaluate the influence of the use of roles and of hierarchical structures for representing ontologies on the potential for information integration. The use of a hierarchical structure increases the potential for information integration. The use of roles also improves the potential for information integration, although to a much lesser extent than did the use of hierarchies. The combined effect of roles and hierarchies had a more positive effect in the potential for information integration than the use of roles alone or hierarchies alone. These three combinations (hierarchies, roles, roles and hierarchies) gave better results than the results using neither roles nor hierarchies
    corecore