6,433 research outputs found

    Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification

    Get PDF
    Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called \textbf{j}oint and \textbf{p}rogressive \textbf{l}earning str\textbf{a}teg\textbf{y} (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.Comment: accepted in ECCV 201

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Progressive content-based retrieval of image and video with adaptive and iterative refinement

    Get PDF
    A method and apparatus for minimizing the time required to obtain results for a content based query in a data base. More specifically, with this invention, the data base is partitioned into a plurality of groups. Then, a schedule or sequence of groups is assigned to each of the operations of the query, where the schedule represents the order in which an operation of the query will be applied to the groups in the schedule. Each schedule is arranged so that each application of the operation operates on the group which will yield intermediate results that are closest to final results

    Compact and indexed representation for LiDAR point clouds

    Get PDF
    [Abstract]: LiDAR devices are capable of acquiring clouds of 3D points reflecting any object around them, and adding additional attributes to each point such as color, position, time, etc. LiDAR datasets are usually large, and compressed data formats (e.g. LAZ) have been proposed over the years. These formats are capable of transparently decompressing portions of the data, but they are not focused on solving general queries over the data. In contrast to that traditional approach, a new recent research line focuses on designing data structures that combine compression and indexation, allowing directly querying the compressed data. Compression is used to fit the data structure in main memory all the time, thus getting rid of disk accesses, and indexation is used to query the compressed data as fast as querying the uncompressed data. In this paper, we present the first data structure capable of losslessly compressing point clouds that have attributes and jointly indexing all three dimensions of space and attribute values. Our method is able to run range queries and attribute queries up to 100 times faster than previous methods.Secretara Xeral de Universidades; [ED431G 2019/01]Ministerio de Ciencia e Innovacion; [PID2020-114635RB-I00]Ministerio de Ciencia e Innovacion; [PDC2021-120917C21]Ministerio de Ciencia e InnovaciĂłn; [PDC2021-121239-C31]Ministerio de Ciencia e InnovaciĂłn; [PID2019-105221RB-C41]Xunta de Galicia; [ED431C 2021/53]Xunta de Galicia; [IG240.2020.1.185
    • …
    corecore