811 research outputs found

    Self-Organized Operational Neural Networks for Severe Image Restoration Problems

    Get PDF
    Discriminative learning based on convolutional neural networks (CNNs) aims to perform image restoration by learning from training examples of noisy-clean image pairs. It has become the go-to methodology for tackling image restoration and has outperformed the traditional non-local class of methods. However, the top-performing networks are generally composed of many convolutional layers and hundreds of neurons, with trainable parameters in excess of several millions. We claim that this is due to the inherent linear nature of convolution-based transformation, which is inadequate for handling severe restoration problems. Recently, a non-linear generalization of CNNs, called the operational neural networks (ONN), has been shown to outperform CNN on AWGN denoising. However, its formulation is burdened by a fixed collection of well-known nonlinear operators and an exhaustive search to find the best possible configuration for a given architecture, whose efficacy is further limited by a fixed output layer operator assignment. In this study, we leverage the Taylor series-based function approximation to propose a self-organizing variant of ONNs, Self-ONNs, for image restoration, which synthesizes novel nodal transformations onthe-fly as part of the learning process, thus eliminating the need for redundant training runs for operator search. In addition, it enables a finer level of operator heterogeneity by diversifying individual connections of the receptive fields and weights. We perform a series of extensive ablation experiments across three severe image restoration tasks. Even when a strict equivalence of learnable parameters is imposed, Self-ONNs surpass CNNs by a considerable margin across all problems, improving the generalization performance by up to 3 dB in terms of PSNR

    Fleet Prognosis with Physics-informed Recurrent Neural Networks

    Full text link
    Services and warranties of large fleets of engineering assets is a very profitable business. The success of companies in that area is often related to predictive maintenance driven by advanced analytics. Therefore, accurate modeling, as a way to understand how the complex interactions between operating conditions and component capability define useful life, is key for services profitability. Unfortunately, building prognosis models for large fleets is a daunting task as factors such as duty cycle variation, harsh environments, inadequate maintenance, and problems with mass production can lead to large discrepancies between designed and observed useful lives. This paper introduces a novel physics-informed neural network approach to prognosis by extending recurrent neural networks to cumulative damage models. We propose a new recurrent neural network cell designed to merge physics-informed and data-driven layers. With that, engineers and scientists have the chance to use physics-informed layers to model parts that are well understood (e.g., fatigue crack growth) and use data-driven layers to model parts that are poorly characterized (e.g., internal loads). A simple numerical experiment is used to present the main features of the proposed physics-informed recurrent neural network for damage accumulation. The test problem consist of predicting fatigue crack length for a synthetic fleet of airplanes subject to different mission mixes. The model is trained using full observation inputs (far-field loads) and very limited observation of outputs (crack length at inspection for only a portion of the fleet). The results demonstrate that our proposed hybrid physics-informed recurrent neural network is able to accurately model fatigue crack growth even when the observed distribution of crack length does not match with the (unobservable) fleet distribution.Comment: Data and codes (including our implementation for both the multi-layer perceptron, the stress intensity and Paris law layers, the cumulative damage cell, as well as python driver scripts) used in this manuscript are publicly available on GitHub at https://github.com/PML-UCF/pinn. The data and code are released under the MIT Licens

    Operational Neural Networks

    Get PDF
    Feed-forward, fully-connected Artificial Neural Networks (ANNs) or the so-called Multi-Layer Perceptrons (MLPs) are well-known universal approximators. However, their learning performance varies significantly depending on the function or the solution space that they attempt to approximate. This is mainly because of their homogenous configuration based solely on the linear neuron model. Therefore, while they learn very well those problems with a monotonous, relatively simple and linearly separable solution space, they may entirely fail to do so when the solution space is highly nonlinear and complex. Sharing the same linear neuron model with two additional constraints (local connections and weight sharing), this is also true for the conventional Convolutional Neural Networks (CNNs) and, it is, therefore, not surprising that in many challenging problems only the deep CNNs with a massive complexity and depth can achieve the required diversity and the learning performance. In order to address this drawback and also to accomplish a more generalized model over the convolutional neurons, this study proposes a novel network model, called Operational Neural Networks (ONNs), which can be heterogeneous and encapsulate neurons with any set of operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. Finally, a novel training method is formulated to back-propagate the error through the operational layers of ONNs. Experimental results over highly challenging problems demonstrate the superior learning capabilities of ONNs even with few neurons and hidden layers.Comment: 21 page

    Exploiting Heterogeneity in Operational Neural Networks by Synaptic Plasticity

    Get PDF
    The recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network model, ONNs are based on a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. However, the default search method to find optimal operators in ONNs, the so-called Greedy Iterative Search (GIS) method, usually takes several training sessions to find a single operator set per layer. This is not only computationally demanding, also the network heterogeneity is limited since the same set of operators will then be used for all neurons in each layer. To address this deficiency and exploit a superior level of heterogeneity, in this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons. During training, each operator set in the library can be evaluated by their synaptic plasticity level, ranked from the worst to the best, and an elite ONN can then be configured using the top ranked operator sets found at each hidden layer. Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs and as a result the performance gap over the CNNs further widens.Comment: 15 pages, 19 figures, journal manuscrip

    Zero-Shot Motor Health Monitoring by Blind Domain Transition

    Full text link
    Continuous long-term monitoring of motor health is crucial for the early detection of abnormalities such as bearing faults (up to 51% of motor failures are attributed to bearing faults). Despite numerous methodologies proposed for bearing fault detection, most of them require normal (healthy) and abnormal (faulty) data for training. Even with the recent deep learning (DL) methodologies trained on the labeled data from the same machine, the classification accuracy significantly deteriorates when one or few conditions are altered. Furthermore, their performance suffers significantly or may entirely fail when they are tested on another machine with entirely different healthy and faulty signal patterns. To address this need, in this pilot study, we propose a zero-shot bearing fault detection method that can detect any fault on a new (target) machine regardless of the working conditions, sensor parameters, or fault characteristics. To accomplish this objective, a 1D Operational Generative Adversarial Network (Op-GAN) first characterizes the transition between normal and fault vibration signals of (a) source machine(s) under various conditions, sensor parameters, and fault types. Then for a target machine, the potential faulty signals can be generated, and over its actual healthy and synthesized faulty signals, a compact, and lightweight 1D Self-ONN fault detector can then be trained to detect the real faulty condition in real time whenever it occurs. To validate the proposed approach, a new benchmark dataset is created using two different motors working under different conditions and sensor locations. Experimental results demonstrate that this novel approach can accurately detect any bearing fault achieving an average recall rate of around 89% and 95% on two target machines regardless of its type, severity, and location.Comment: 13 pages, 9 figures, Journa

    Self-Organized Operational Neural Networks with Generative Neurons

    Get PDF
    Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron model. ONNs are heterogenous networks with a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. However, Greedy Iterative Search (GIS) method, which is the search method used to find optimal operators in ONNs takes many training sessions to find a single operator set per layer. This is not only computationally demanding, but the network heterogeneity is also limited since the same set of operators will then be used for all neurons in each layer. Moreover, the performance of ONNs directly depends on the operator set library used, which introduces a certain risk of performance degradation especially when the optimal operator set required for a particular task is missing from the library. In order to address these issues and achieve an ultimate heterogeneity level to boost the network diversity along with computational efficiency, in this study we propose Self-organized ONNs (Self-ONNs) with generative neurons that have the ability to adapt (optimize) the nodal operator of each connection during the training process. Therefore, Self-ONNs can have an utmost heterogeneity level required by the learning problem at hand. Moreover, this ability voids the need of having a fixed operator set library and the prior operator search within the library in order to find the best possible set of operators. We further formulate the training method to back-propagate the error through the operational layers of Self-ONNs.Comment: 14 pages, 14 figures, journal articl

    Blind Restoration of Real-World Audio by 1D Operational GANs

    Full text link
    Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1
    • …
    corecore