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Abstract
Feed-forward, fully connected artificial neural networks or the so-called multi-layer perceptrons are well-known universal

approximators. However, their learning performance varies significantly depending on the function or the solution space

that they attempt to approximate. This is mainly because of their homogenous configuration based solely on the linear

neuron model. Therefore, while they learn very well those problems with a monotonous, relatively simple and linearly

separable solution space, they may entirely fail to do so when the solution space is highly nonlinear and complex. Sharing

the same linear neuron model with two additional constraints (local connections and weight sharing), this is also true for

the conventional convolutional neural networks (CNNs) and it is, therefore, not surprising that in many challenging

problems only the deep CNNs with a massive complexity and depth can achieve the required diversity and the learning

performance. In order to address this drawback and also to accomplish a more generalized model over the convolutional

neurons, this study proposes a novel network model, called operational neural networks (ONNs), which can be hetero-

geneous and encapsulate neurons with any set of operators to boost diversity and to learn highly complex and multi-modal

functions or spaces with minimal network complexity and training data. Finally, the training method to back-propagate the

error through the operational layers of ONNs is formulated. Experimental results over highly challenging problems

demonstrate the superior learning capabilities of ONNs even with few neurons and hidden layers.

Keywords Operational neural network � Heterogeneous and nonlinear neural networks � Convolutional neural networks

1 Introduction

1.1 Problem formulation

The conventional fully connected and feed-forward neural

networks, such as multi-layer perceptrons (MLPs) and

radial basis functions (RBFs), are universal approximators.

Such networks optimized by iterative processes [1, 2], or

even formed by random architectures and solving a closed-

form optimization problem for the output weights [3], can

approximate any continuous function, providing that the

employed neural units (i.e., the neurons) are capable of

performing nonlinear piecewise continuous mappings of

the receiving signals and that the capacity of the network

(i.e., the number of layers’ neurons) is sufficiently high.

The standard approach in using such traditional neural

networks is to manually define the network’s architecture

(i.e., the number of neural layers, the size of each layer)
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and use the same activation function for all neurons of the

network.

While there is recently a lot of activity in searching for

good network architectures based on the data at hand,

either progressively [4, 5] or by following extremely

laborious search strategies [6–10], the resulting network

architectures may still exhibit a varying or entirely unsat-

isfactory performance levels, especially when facing with

highly complex and nonlinear problems. This is mainly due

to the fact that all such traditional neural networks employ

a homogenous network structure consisting of only a crude

model of the biological neurons. This neuron model is

capable of performing only the linear transformation (i.e.,

linear weighted sum) [11], while the biological neurons or

neural systems in general are built from a large diversity of

neuron types with heterogeneous, varying structural, bio-

chemical and electrophysiological properties [12–17]. For

instance, in mammalian retina there are roughly 55 dif-

ferent types of neurons to perform the low-level visual

sensing [15]. Therefore, while these homogenous neural

networks are able to approximate the responses of the

training samples, they may not learn the actual underlying

functional form of the mapping between the inputs and the

outputs of the problem. There have been some attempts in

the literature to modify MLPs by changing the neuron

model and/or conventional BP algorithm [18–20], or the

parameter updates [21, 22]; however, their performance

improvements were not significant in general, since such

approaches still inherit the main drawback of MLPs, i.e.,

homogenous network configuration with the same (linear)

neuron model. Extensions of the MLP networks particu-

larly for end-to-end learning of 2D (visual) signals, i.e.,

convolutional neural networks (CNNs), and time-series

data, i.e., recurrent neural networks (RNNs) and long short-

term memories (LSTMs), naturally inherit the same limi-

tations originating from the traditional neuron model.

In biological learning systems, the limitations men-

tioned above are addressed at the neuron cell level [17]. In

the mammalian brain and nervous system, each neuron

(Fig. 1) conducts the electrical signal over three distinct

operations: (1) synaptic connections in Dendrites: an

individual operation over each input signal from the

synapse connection of the input neuron’s axon terminals,

(2) a pooling operation of the operated input signals via

spatial and temporal signal integrator in the Soma and,

finally, (3) an activation in the initial section of the axon or

the so-called axon hillock: If the pooled potentials exceed a

certain limit, it ‘‘activates’’ a series of pulses (called action

potentials). As shown in the right side of Fig. 1 each ter-

minal button is connected to other neurons across a small

gap called synapse. The physical and neurochemical

characteristics of each synapse determine the signal oper-

ation which is nonlinear in general [23, 24] along with the

signal strength and polarity of the new input signal. In-

formation storage or processing is concentrated in the cells’

synaptic connections or more precisely through certain

operations of these connections together with the connec-

tion strengths (weights) [23]. Accordingly, in neurological

systems, several distinct operations with proper weights

(parameters) are created to accomplish such diversity and

trained in time to perform or ‘‘to learn’’ many neural

functions. Biological neural networks with higher diversity

of computational operators have more computational

power [13], and it is a fact that adding more neural

diversity allows the network size and total connections to

be reduced [17].

1.2 Related work: generalized operational
perceptrons

Motivated by these biological foundations, a novel feed-

forward and fully connected neural network model, called

generalized operational perceptrons (GOPs) [25–29], has

recently been proposed to accurately model the actual

biological neuron with varying synaptic connections. In

this heterogeneous configuration, a superior diversity

appearing in biological neurons and neural networks has

been accomplished. More specifically, the diverse set of

neurochemical operations in biological neurons (the non-

linear synaptic connections plus the integration process

occurring in the soma of a biological neuron model) has

been modeled by the corresponding ‘‘nodal’’ (synaptic

connection) and ‘‘pool’’ (integration in soma) operators,

while the ‘‘activation’’ operator has directly been adopted.

An illustrative comparison between the traditional per-

ceptron neuron in MLPs and the GOP neuron model is

illustrated in Fig. 2. Based on the fact that actual learning

occurs in the synaptic connections with nonlinear operators

in general, those all time-fixed linear model of MLPs can

now be generalized by the GOP neurons that allow any

(blend of) nonlinear transformations to be used for defining

the input signal transformations at the neuron level. Based

on the fact that the GOP neuron naturally became a

superset of linear perceptrons (MLP neurons), GOPs pro-

vide an opportunity to better encode the input signal using

linear and nonlinear fusion schemes and, thus, lead to more

Nucleus

Axon

Dendrites

Soma

Terminal
Buttons

Axon

Terminal
Button

Dendrites

Neuro-
transmitters
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Synaptic
Gap

Fig. 1 A biological neuron (left) with the direction of the signal flow

and a synapse (right)
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compact neural network architectures achieving highly

superior performance levels, e.g., the studies [25, 26] have

shown that GOPs can achieve elegant performance levels

on many challenging problems where MLPs entirely fail to

learn such as ‘‘two spirals,’’ ‘‘N-bit parity’’ for N[ 10 and

‘‘white noise regression.’’ As being the superset, a GOP

network may fall back to a conventional MLP only when

the learning process defining the neurons’ operators indi-

cates that the native MLP operators should be used for the

learning problem in hand.

GOPs are the reference point for the proposed ONNs as

they share the main philosophy of generalizing the con-

ventional homogenous network only with the linear neuron

model by a heterogeneous model with an ‘‘operational’’

neuron model which can encapsulate any set of (linear or

nonlinear) operators. As illustrated in Fig. 2, the conven-

tional feed-forward and fully connected ANNs, or the so-

called multi-layer perceptrons (MLPs), have the following

linear model:

xlþ1i ¼ blþ1i þ
XNl

k¼1
ylkw

lþ1
ik ; 8i 2 1;Nlþ1½ �; ð1Þ

This means that the output of the previous layer neuron’s

output, ylk, contributes inputs of all neurons in the next

layer, l ? 1. Then, a nonlinear (or piecewise linear) acti-

vation function is applied to all the neurons of layer l ? 1

in an elementwise manner. In a GOP neuron, this linear

model has been replaced by an operator set of three oper-

ators: nodal operator, Wlþ1
i , pool operator, Plþ1i , and finally

the activation operator, f lþ1i . The nodal operator models a

synaptic connection with a certain neurochemical opera-

tion. The pool operator models the integration (or fusion)

operation performed in Soma, and finally, the activation

operator encapsulates any activation function. Therefore,

the output of the previous layer neuron, ylk, still contributes

all the neurons’ inputs in the next layer with the individual

operator set of each neuron, i.e.,

xlþ1i ¼ blþ1i þ Plþ1i Wlþ1
i wlþ1

1i ; yl1
� �

; . . .;Wlþ1
i wlþ1

ki ; ylk
� �

; n
� �

;

8i 2 1;Nlþ1½ �
ð2Þ

Comparison of Eq. (2) with Eq. (1) reveals the fact that when

Wlþ1
i wlþ1

ki ; ylk
� �

¼ wlþ1
ki � ylk and Plþ1

i ¼
P
�ð Þ, then the GOP

neuron will be identical to a MLP neuron. However, in this

relaxedmodel, now the neurons can get any proper nodal, pool

and activation operator so as to maximize the learning capa-

bility. For instance, the nodal operator library, Wf g, can be

composed of: multiplication, exponential, harmonic (sinu-

soid), quadratic function, Gaussian, derivative of Gaussian

(DoG), Laplacian of Gaussian (LoG) and Hermitian. Simi-

larly, the pool operator library, Pf g, can include: summation,

n-correlation, maximum and median. Typical activation

functions that suit to classification problems can be combined

within the activation operator library, Ff g, composed of, e.g.,

tanh, linear and lin-cut. As in a conventionalMLP neuron, the

ith GOP neuron at layer l ? 1 has the connection weights to

each neuron in the previous layer, l; however, each weight is

now the internal parameter of its nodal operator, Wlþ1
i , not

necessarily the scalar weight of the output.

1.3 Motivation and objectives

In this study, a novel neuron model is presented for the pur-

pose of generalizing the linear neuron model of conventional

CNNs with any nonlinear operator. As an extension of the

perceptrons, the neurons of a CNN perform the same linear

transformation (i.e., the linear convolution, or equivalently,

the linear weighted sum) as perceptrons do, and, it is, there-

fore, not surprising that in many challenging problems only

the deep CNNs with a massive complexity and depth can

Fig. 2 Conventional MLP

neuron (left) vs. GOP neuron

with nodal, Wlþ1
i , pool, Plþ1

i ,

and activation, f lþ1i , operators
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achieve the required diversity and the learning performance.

The main objective of this study is to propose the operational

neural networks (ONNs) model. Finally, the training method

to back-propagate the error through the operational layers of

ONNs is formulated. With the right operator set, we shall

show that ONNs even with a shallow and compact configu-

ration and under severe restrictions (i.e., scarce and low-res-

olution train data, shallow training, limited operator library)

can achieve an elegant learning performance over such chal-

lenging visual problems (e.g., image denoising, syntheses,

transformation and segmentation) that can defy the conven-

tional CNNs having the same or even higher network com-

plexities. In order to perform an unbiased evaluation and

direct comparison between the convolutional and operational

neurons/layers,we shall avoid using the fully connected layers

in both network types. This is a standard practice used by

many state-of-the-art CNN topologies today.

The rest of the paper is organized as follows: Sect. 2

will present the proposed ONNs and formulates the BP

training. The readers are encouraged to refer to Appendix

A where a brief review on GOPs is presented in order to

highlight the motivation of a heterogeneous and nonlinear

network and to present how such a network can be trained

by a modified BP. Section 3 presents a rich set of experi-

ments to perform comparative evaluations between the

learning performances of ONNs and CNNs over the four

challenging problems. A detailed computational complex-

ity analysis between the two network types will also be

presented in this section. Finally, Sect. 4 concludes the

paper and suggests topics for future research.

2 Operational neural networks

The convolutional layers of conventional 2D CNNs share

the same neuron model as in MLPs with two additional

restrictions: limited connections and weight sharing.

Without these restrictions, every pixel in a feature map in a

layer would be connected to every pixel of a feature map at

the previous layer and this would create an infeasibly large

number of connections and weights that cannot be opti-

mized efficiently. Instead, by these two constraints a pixel

in the current layer will now be connected only to the

corresponding neighboring pixels in the previous layer

(limited connections) and the amount of connections can be

determined by the size of the kernel (filter). Moreover, the

connection weights of the kernel will be shared for each

pixel-to-pixel connection (weight sharing). By these

restrictions, the linear weighted sum as expressed in

Eq. (1) for MLPs will turn into the convolution formula

used in CNNs. This is also evident in the illustration in

Fig. 3 (left) where the three consecutive convolutional

layers without the subsampling (pooling) layers are shown.

So, the input map of the next layer neuron, xlk, will be

obtained by cumulating the final output maps, yl�1i , of the

previous layer neurons convolved with their individual

kernels, wl
ki, as follows:

xlk ¼ blk þ
XNl�1

i¼1
conv2Dðwl

ki; y
l�1
i ; ‘NoZeroPad’Þ

) xlk m; nð Þ
�� M�1;N�1ð Þ
0;0ð Þ ¼

X2

r¼0

X2

t¼0

wl
ki r; tð Þyl�1i mþ r; nþ tð Þ

� �
þ � � �

ð3Þ

ONNs share the essential idea of GOPs and extend the sole

usage of linear convolutions in the convolutional layers of

CNNs by the nodal and pool operators. In this way, the

operational layers and neurons constitute the backbone of

an ONN and other properties such as weight sharing and

limited (kernelwise) connectivity are common with a CNN.

The three consecutive operational layers and the kth neuron

of the sample ONN with 3 9 3 kernels and M = N = 22

input map sizes in the previous layer are shown in Fig. 3

(right). The input map of the kth neuron at the current

layer, xlk, is obtained by pooling the final output maps, yl�1i ,

of the previous layer neurons operated with its corre-

sponding kernels, wl
ki, as follows:

xlk ¼ blk þ
XNl�1

i¼1
oper2Dðwl

ki; y
l�1
i ; ‘NoZeroPad’Þ

xlk m; nð Þ
�� M�1;N�1ð Þ
0;0ð Þ ¼ blkþ

PNl�1

i¼1
Pl
k

Wl
ki w

l
ki 0; 0ð Þ; yl�1i m; nð Þ

� �
; . . .;

Wl
ki w

l
ki r; tð Þ; yl�1i mþ r; nþ tð Þ; . . .

� �
; . . .

" # !
:

ð4Þ

Direct comparison between Eqs. (3) and (4) will reveal

the fact that when the pool operator is ‘‘summation,’’

Pl
k ¼ R, and the nodal operator is ‘‘multiplication,’’

Wl
ki y

l�1
i m; nð Þ;wl

ki r; tð Þ
� �

¼ wl
ki r; tð Þyl�1i m; nð Þ, and for all

neurons of an ONN, then the resulting homogenous ONN

will be identical to a CNN. Therefore, as the GOPs are the

superset of MLPs, ONNs are a superset of CNNs.

2.1 Training with back-propagation

The formulation of BP training consists of four distinct

phases: (1) computation of the delta error, DL
1 ; at the output

layer, (2) inter-BP between two operational layers, (3)

intra-BP in an operational neuron and (4) computation of

the weight (operator kernel) and bias sensitivities in order

to update them at each BP iteration. Phase 3 also takes care

of up- or downsampling (pooling) operations whenever
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they are applied in the neuron. In order to explain each

phase in detail, we shall first formulate its counterpart for

the convolutional layers (and neurons) of a conventional

CNN and then we will present the corresponding formu-

lation for the operational layers (and neurons) while

highlighting the main differences. In this way, the BP

analogy between MLPs and GOPs presented in Sect 4. A

will be constructed this time between CNNs and ONNs.

One can also witness how the BP formulation for GOPs

will alter for ONNs due to the two aforementioned

restrictions. For this section, we shall assume a particular

application, e.g., object segmentation, to exemplify a

learning objective for training.

2.1.1 BP from the output ONN layer

This phase is common for ONNs and CNNs. As shown in

Fig. 4, the output layer has only one output neuron from

which the initial delta error (the sensitivity of the input

with respect to the object segmentation error) is computed.

In the most basic terms the object segmentation error for an

image I in the dataset can be expressed as the mean square

error (MSE) between the object’s segmentation mask (SM)

and the real output, yL1.

E Ið Þ ¼
X

p

yL1 Ip
� �
� SM Ip

� �� �2 ð5Þ

where Ip is the pixel p of the image I. The delta sensitivity

of the error can then be computed as:

DL
1 ¼

oE

oxL1
¼ oE

oyL1

oyL1
oxL1
¼ yL1 Ið Þ � SM Ið Þ
� �

f 0 xL1 Ið Þ
� �

ð6Þ

Note that the delta error is proportional to the difference

between the real output and the segmentation mask. For

ONNs, any differentiable error function can be used

besides MSE.

2.1.2 Inter-BP among ONN layers: Dylk �
�

Dl + 1
i

Once the delta error is computed in the output layer, it will

be back-propagated to the hidden layers of the network.

Convolu�onal Layers of CNNs Opera�onal Layers of ONNs 

Fig. 3 Three consecutive convolutional (left) and operational (right) layers with the kth neuron of a CNN (left) and an ONN (right)

Fig. 4 Delta error computation at the output layer for segmentation
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The basic rule of BP states the following: If the output of

the kth neuron at layer l contributes a neuron i in the next

level with a weight, wl
ki, that next layer neuron’s delta,

Dlþ1
ı , will contribute with the same weight to form Dl

k of the

neuron in the previous layer, l. This can be expressed as

oE

oylk
¼ Dylk �

BP X
Dlþ1
1 ; 8i 2 f1;Nlþ1g ð7Þ

Specifically

oE

oylk
¼ Dylk ¼

XNlþ1

i¼1

oE

oxlþ1i

oxlþ1i

oylk
¼
XNlþ1

i¼1
Dlþ1
1

oxlþ1i

oylk
ð8Þ

where the delta error in the next (output) layer is already

computed; however, the derivative,
oxlþ1

i

oyl
k

, differs between a

convolutional and operational layer. In the former, the

input–output expression is

xlþ1i ¼ . . .þ ylk � wlþ1
ik þ � � � ð9Þ

It is obviously hard to compute the derivative directly from

the convolution. Instead, we can focus on a single pixel’s

contribution of the output, ylk m; nð Þ, to the pixels of the

xlþ1i m; nð Þ shown. Assuming a 3 9 3 kernel, Eq. (10)

presents the contribution of the ylk m; nð Þ to the 9 neighbor

pixels. This is illustrated in Fig. 5 where the role of an

output pixel, ylk m; nð Þ, over two pixels of the next layer’s

input neuron’s pixels, xlþ1i m� 1; n� 1ð Þ and

xlþ1i mþ 1; nþ 1ð Þ. Considering the pixel as a MLP neuron

that are connected to other MLP neurons in the next layer,

according to the basic rule of BP one can express the delta

of ylk m; nð Þ as in Eq. (11).

xlþ1i m� 1; n� 1ð Þ ¼ . . .þ ylk m; nð Þ:wlþ1
ik 2; 2ð Þ þ . . .

xlþ1i m� 1; nð Þ ¼ . . .þ ylk m; nð Þ:wlþ1
ik 2; 1ð Þ þ . . .

xlþ1i m; nð Þ ¼ . . .þ ylk m; nð Þ:wlþ1
ik ð1; 1Þ þ . . .

. . .

xlþ1i mþ 1; nþ 1ð Þ ¼ . . .þ ylk m; nð Þ:wlþ1
ik 0; 0ð Þ þ . . .

) xlþ1i mþ r; nþ tð Þ
�� M�1;N�1ð Þ
1;1ð Þ ¼ wlþ1

ik 1� r; 1� tð Þylk m; nð Þ þ . . .

ð10Þ

oE

oylk
m; nð Þ

����
M�1;N�1ð Þ

0;0ð Þ
¼ Dylk m; nð Þ

¼
XNlþ1

i¼1

X1

r¼�1

X1

t¼�1

oE

oxlþ1ı mþ r; nþ tð Þ
oxlþ1ı mþ r; nþ tð Þ

oylk m; nð Þ

 !

¼
XNlþ1

i¼1

X1

r¼�1

X1

t¼�1
Dlþ1
ı mþ r; nþ tð Þ � wlþ1

ik 1� r; 1� tð Þ
 !

ð11Þ

If we generalize Eq. (11) for all pixels of the Dylk

nylk ¼
XNlþ1

i¼1
conv 2D nlþ1i ; rot180 wlþ1

ik

� �
; ‘ZeroPad’

� �
ð12Þ

Interestingly, this expression also turns out to be a full

convolution with zero padding by (Kx-1, Ky-1) zeros to

each boundary of the Dlþ1
ı in order to obtain equal

dimensions (width and height) for nylk with ylk.

In an operational layer, the input–output expression

becomes

xlþ1i ¼ . . .þ oper2D ylk;w
lþ1
ik

� �
þ . . . ð13Þ

where oper2D ylk;w
lþ1
ik

� �
represents a 2D operation with a

particular pool and nodal operator. Once again, it is not

feasible to compute the derivative directly from this 2D

operation formula (pooling of the outputs of the nodal

operators). Instead, we can again focus on a single pixel’s

Fig. 5 A single pixel’s contribution of the output, ylk m; nð Þ, to the two pixels of the xlþ1i using a 3 9 3 kernel
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contribution of the output, ylk m; nð Þ, to the pixels of the

xlþ1i m; nð Þ. Assuming again a Kx� Ky ¼ 3� 3 kernel,

Eq. (14) formulates the contribution of the ylk m; nð Þ to the 9

neighbor pixels. This is illustrated in Fig. 6 where the

contribution of an output pixel, ylk m; nð Þ, over the two

pixels of the next layer’s input neuron’s pixels,

xlþ1i m� 1; n� 1ð Þ and xlþ1i m� 2; n� 2ð Þ, is shown. Con-
sidering the pixel as a ‘‘GOP neuron’’ that is connected to

other GOP neurons in the next layer, according to the basic

rule of BP, one can then formulate the delta of ylk m; nð Þ as
in Eq. (15). Note that this is slightly different than what we

derived for the contribution of the ylk m; nð Þ for convolu-

tional layers, expressed in Eq. (11) and illustrated in Fig. 5.

In that case the output pixel, ylk m; nð Þ, and input pixel,

xlþ1i m; nð Þ, were connected through the center of the kernel,
i.e., xlþ1i m; nð Þ ¼ . . .þ ylk m; nð Þ � wlþ1

ik 1; 1ð Þ þ . . . This

connection has led to the rotation (by 180 degrees)

operation for the BP of the delta error. In order to avoid this

undesired rotation, the output pixel, ylk m; nð Þ, and input

pixel, xlþ1i m; nð Þ, are connected through the first (top-left)

element of the kernel, i.e., xlþ1i m; nð Þ ¼ . . .þ
Plþ1
i Wlþ1

i ylk m; nð Þ;
��

wlþ1
ik 0; 0ð ÞÞ; . . .;Wlþ1

i ylk mþ r; nþ tð Þ;
�

wlþ1
ik r; tð Þ; Þ. . .Þ�: This means that the contribution of the

output pixel, ylk m; nð Þ, will now only be on the

xlþ1i m� r; n� tð Þ as expressed in Eq. (14). The major

difference over the delta error BP expressed in Eqs. (11)

and (12) is that the chain rule of derivatives should now

include the two operator functions, pool and nodal, both of

which were fixed to summation and multiplication before.

The delta error of the output pixel can, therefore, be

expressed as in Eq. (15) in the generic form of pool, Plþ1
i ,

and nodal, Wlþ1
i , operator functions of each operational

neuron i 2 1; ::;Nlþ1½ � in the next layer.

Fig. 6 Starting from (0,0), a

single pixel’s contribution of the

output, ylk m; nð Þ, to the two

pixels of the xlþ1i using a Kx�
Ky ¼ 3� 3 kernel

xlþ1i m� 1; n� 1ð Þ ¼ . . .þ Plþ1
i Wlþ1

i ylk m� 1; n� 1ð Þ;wlþ1
ik 0; 0ð Þ

� �
; . . .;Wlþ1

i ylk m; nð Þ;wlþ1
ik 1; 1ð Þ

� �� �
þ . . .

xlþ1i m� 1; nð Þ ¼ . . .þ Plþ1
i Wlþ1

i ylk m� 1; nð Þ;wlþ1
ik 0; 0ð Þ

� �
; . . .;Wlþ1

i ylk m; nð Þ;wlþ1
ik 1; 0ð Þ

� �
; . . .

� �
þ . . .

xlþ1i m; nð Þ ¼ . . .þ Plþ1
i Wlþ1

i ylk m; nð Þ;wlþ1
ik 0; 0ð Þ

� �
; . . .;Wlþ1

i ylk mþ r; nþ tð Þ;wlþ1
ik r; tð Þ; Þ. . .

� �� �
þ . . .

. . .

xlþ1i mþ 1; nþ 1ð Þ ¼ . . .þ Plþ1
i Wlþ1

i ylk mþ 1; nþ 1ð Þ;wlþ1
ik 0; 0ð Þ

� �
; . . .

� �
þ . . .

) xlþ1i m� r; n� tð Þ
�� M�1;N�1ð Þ
1;1ð Þ ¼ blþ1i þ

XN1

k¼1
Plþ1
i . . .;Wlþ1

i wlþ1
ik r; tð Þ; ylk m; nð Þ

� �
; . . .

� �

ð14Þ

)
oE

oylk
m; nð Þ

����
M�1;N�1ð Þ

0;0ð Þ
¼ Dylk m; nð Þ

¼
XNlþ1

i¼1

XKx�1

r¼0

XKy�1

t¼0

oE

oxlþ1i m� r; n� tð Þ
� oxlþ1i m� r; n� tð Þ
oPlþ1

i . . .;Wlþ1
i ylk m; nð Þ;wlþ1

ik r; tð Þ
� �

; . . .
� �

�
oPlþ1

i . . .;Wlþ1
i ylk m; nð Þ;wlþ1

ik r; tð Þ
� �

; . . .
� �

oWlþ1
i ylk m; nð Þ;wlþ1

ik r; tð Þ
� � �

oWlþ1
i ylk m; nð Þ;wlþ1

ik r; tð Þ
� �

oylk m; nð Þ

0
BBBB@

1
CCCCA

ð15Þ
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In Eq. (15), note that the first term,
oxlþ1

1
m�r;n�tð Þ

oPlþ1
i

...;Wlþ1
i yl

k
m;nð Þ;wlþ1

ik
r;tð Þð Þ;...½ � ¼ 1. Let

rWki
Plþ1i m; n; r; tð Þ ¼ oPlþ1

i
...;Wlþ1

i yl
k
m;nð Þ;wlþ1

ik
r;tð Þð Þ;...½ �

oWlþ1
i yl

k
m;nð Þ;wlþ1

ik
r;tð Þð Þ and

ryW
lþ1
ki m; n; r; tð Þ ¼ oWlþ1

i yl
k
m;nð Þ;wlþ1

ik
r;tð Þð Þ

oyl
k
m;nð Þ . First, it is obvious

that both derivatives, rWki
Plþ1i and ryW

lþ1
ki , no longer

require the rotation of the kernel, wlþ1
ik . The first derivative,

rWki
Plþ1i , depends on the role (contribution) of the partic-

ular nodal term, Wlþ1
i ylk m; nð Þ;wlþ1

ik r; tð Þ
� �

, within the pool

function. The derivative, rWki
Plþ1i m; n; r; tð Þ, is computed

while computing the pixels xlþ1i m� r; n� tð Þ for 8r; t 2
Kx;Kyð Þ that corresponds to the particular output value,

ylk m; nð Þ; within each pool function. Recall that this is the

contribution of the ylk m; nð Þ alone for each input value at

the next layer, xlþ1i m� r; n� tð Þ for 8r; t 2 Kx;Kyð Þ.
When the pool operator is summation, Plþ1i ¼ Sigma, then

rWki
Plþ1i ¼ 1, which is constant for any nodal term. For

any other alternatives, the derivative rWki
Plþ1i m; n; r; tð Þ

will be a function of four variables. The second derivative,

ryW
lþ1
ki , is the derivative of the nodal operator with respect

to the output. For instance, when the nodal operator is the

common operator of the convolutional neuron, ‘‘multipli-

cation,’’ i.e., Wlþ1
i ylk m; nð Þ;wlþ1

ik r; tð Þ
� �

¼ ylk m; nð Þ � wlþ1
ik

r; tð Þ, then this derivative is simply the weight kernel,

wlþ1
ik r; tð Þ: This is the only case where this derivative will

be independent from the output, ylk m; nð Þ. For any other

alternatives, the derivative ryW
lþ1
ki m; n; r; tð Þ will also be a

function of four variables. By using these four variable

derivatives or equivalently two 4D matrices, Eq. (15) can

be simplified as Eq. (16). Note that Dylk, rWki
Plþ1i and

ryW
lþ1
ki have the size, M � N, while the next layer delta

error, Dlþ1
i ; has the size, M � Kx þ 1ð Þ � N � Ky þ 1

� �
,

respectively. Therefore, to enable this variable 2D convo-

lution in this equation, the delta error, Dlþ1
i ; is padded zeros

on all the four boundaries (Kx � 1 zeros on left and right,

Ky � 1zeros on the bottom and topÞ.

Dylk m; nð Þ
�� M�1;N�1ð Þ
0;0ð Þ ¼

XNlþ1

i¼1

 
XKx�1

r¼0

XKy�1

t¼0
Dlþ1
i m� r; n� tð Þ

�rWki
Plþ1i m; n; r; tð Þ � ryW

lþ1
ki m; n; r; tð Þ

!

LetryP
lþ1
i m; n; r; tð Þ ¼ rWki

Plþ1i m; n; r; tð Þ

�ryW
lþ1
ki m; n; r; tð Þ; then

Dylk ¼
XNlþ1

i¼1
Conv2Dvar Dlþ1

i ;ryP
lþ1
i m; n; r; tð Þ

� �

ð16Þ

The two 4D matrices, rWki
Plþ1
i m; n; r; tð Þ and

ryW
lþ1
ki m; n; r; tð Þ, are illustrated in Fig. 7 as the variable

(2D) matrices of indices r and t, each of which is located at

the entry of the 2D matrix of indices, m and n. In other

words, both rWki
Plþ1i m; n; r; tð Þ and ryW

lþ1
ki m; n; r; tð Þ can

be regarded as ‘‘varying’’ kernels with respect to the

location, (m,n). Their elementwise multiplication,

ryP
lþ1
i m; n; r; tð Þ, is also another 4D matrix or, equiva-

lently, a varying weight kernel. A closer look to Eq. (16)

will reveal the fact that the BP of the delta errors still yields

a ‘‘convolution-like’’ formula as in Eq. (12); however, this

time the kernel is not static as in the BP for CNNs, rather a

spatially varying kernel with respect to the location (m,n)

and hence we call it as the ‘‘varying 2D convolution,’’

Conv2Dvar Dlþ1
i ; ryP

lþ1
i m; n; r; tð Þ

� �
, of the delta error

and the final varying kernel, ryP
lþ1
i m; n; r; tð Þ. As men-

tioned earlier, when the pool and nodal operators of the

linear convolution are used, then rWki
Plþ1
i m; n; r; tð Þ ¼ 1,

ryP
lþ1
i m; n; r; tð Þ ¼ ryW

lþ1
ki m; n; r; tð Þ ¼ wlþ1

ik r; tð Þ, which

is no longer a varying kernel; hence, Eq. (16) will be

identical to Eq. (12).

2.1.3 Intra-BP in an ONN neuron: Dl
k 
BP

Dylk

This phase is also common for CNNs and ONNs. If there is

no up- or downsampling (pooling) performed within the

neuron, once the delta errors are back-propagated from the

next layer, l ? 1, to the neuron in the current layer, l, then

we can further back-propagate it to the input delta. One can

write:

Dl
k ¼

oE

oxlk
¼ oE

oylk

oylk
oxlk
¼ oE

oylk
f 0 xlk
� �

¼ Dylkf
0 xlk
� �

ð17Þ

where Dylk is computed as in Eq. (16). On the other hand, if

there is a downsampling by factors, ssx and ssy, then the

back-propagated delta error by Eq. (16) should be first

upsampled to compute the delta error of the neuron. Let

zero-order upsampled map be: uylk ¼ upssx;ssy ylk
� �

. Then,

Eq. (17) can be updated as follows:

Dl
k ¼

oE

oxlk
¼ oE

oylk

oylk
oxlk
¼ oE

oylk

oylk
ouylk

ouylk
oxlk
¼ up

ssx;ssy
Dylk
� �

bf 0 xlk
� �

ð18Þ

where b ¼ 1
ssx:ssy since each pixel of ylk is now obtained by

averaging (ssx.ssy) number of pixels of the intermediate

output, uylk. Finally, if there is a upsampling by factors, usx

and usy, then let the average-pooled map be:

dylk ¼ downusx;usy ylk
� �

. Then, Eq. (17) can be updated as

follows:
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Dl
k ¼

oE

oxlk
¼ oE

oylk

oylk
oxlk
¼ oE

oylk

oylk
odylk

odylk
oxlk

¼ down
usx;usy

Dylk
� �

b�1f 0 xlk
� �

ð19Þ

2.1.4 Computation of the weight (kernel) and bias
sensitivities

The first three BP stages are performed to compute and

back-propagate the delta errors, Dl
k ¼ oE

oxl
k

, to each opera-

tional neuron at each hidden layer. As illustrated in Fig. 3,

a delta error is a 2D map whose size is identical to the input

map of the neuron. The sole purpose of back-propagating

the delta errors at each BP iteration is to use them to

compute the weight and bias sensitivities. This is evident in

the regular BP on MLPs, i.e.,

xlþ1i ¼ blþ1ı þ . . .þ ylkw
lþ1
ik þ . . .

)
oE

owlþ1
ik

¼ ylkD
lþ1
i and

oE

oblþ1ı

¼ Dlþ1
i ð20Þ

Equation (40) in Appendix shows the direct role of the

delta errors in computing the weight and bias sensitivities

in a GOP network. To extend this first for the convolutional

neurons in a CNN, and then for the operational neurons of

an ONN, we can follow a similar approach. Figure 8

illustrates the convolution of the output of the current layer

neuron, ylk, and kernel, wl
ki, to form the input of the ith

neuron, xlþ1i , at the next layer, l ? 1.

We can express the contribution of each kernel element

over the output as shown in Eq. (21). Since each weight

(kernel) element is used in common to form each neuron

input, xlþ1i m; nð Þ, the derivative will be the accumulation of

delta-output product for all pixels as expressed in Eq. (22).

A closer look to the equation will reveal the fact that this

dot-product accumulation is actually nothing but a 2D

convolution of the output with the delta error map of the

input. It is interesting to notice the parallel relation between

the primary transformation and the weight sensitivity

computation, i.e., in MLPs it is a scalar multiplication of

the weight and output, which is repeated in Eq. (20)

between delta error and output, and now the linear con-

volution repeats this relation in Eq. (22).

xlþ1i 0; 0ð Þ ¼ wlþ1
ik 0; 0ð Þylk 0; 0ð Þ þ . . .þ wlþ1

ik 1; 0ð Þylk 1; 0ð Þ þ . . .

xlþ1i 0; 1ð Þ ¼ wlþ1
ik 0; 0ð Þylk 0; 1ð Þ þ . . .þ wlþ1

ik 1; 0ð Þylk 1; 1ð Þ þ . . .

xlþ1i 1; 0ð Þ ¼ wlþ1
ik 0; 0ð Þylk 1; 0ð Þ þ . . .þ wlþ1

ik 1; 0ð Þylk 2; 0ð Þ þ . . .

. . .

xlþ1i m� r; n� tð Þ ¼ wlþ1
ik 0; 0ð Þylk m� r; n� tð Þ

þ . . .þ wlþ1
ik r; tð Þylk m; nð Þ þ . . .

) xlþ1i m; nð Þ
�� M�2;N�2ð Þ
0;0ð Þ ¼

X2

r¼0

X2

t¼0
wlþ1
ik r; tð Þylk mþ r; nþ tð Þ þ . . .

ð21Þ

Fig. 7 BP of the delta error

from the next operational layer

using spatially varying 2D

convolutions

Fig. 8 Convolution of the output of the current layer neuron, ylk , and

kernel, wl
ki, to form the input of the ith neuron, xlþ1i , at the next layer,

l ? 1
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oE

owlþ1
ik r; tð Þ

����
2;2ð Þ

0;0ð Þ
¼

XMþr�Kx

m¼r

XNþt�Ky

n¼t

oE

oxlþ1i m� r; n� tð Þ
oxlþ1i m� r; n� tð Þ

owlþ1
ik r; tð Þ

¼
XM�1

m¼0

XN�1

n¼0
Dlþ1
i m� r; n� tð Þylk m; nð Þ

) oE

owlþ1
ik

¼ conv2D ylk; D
lþ1
i ; ‘NoZeroPad’

� �

ð22Þ

Finally, the bias for this neuron, blk, contributes to all

pixels in the image (same bias shared among all pixels), so

its sensitivity will be the accumulation of individual pixel

sensitivities as expressed in Eq. (23):

oE

oblk
¼
XM�1

m¼0

XN�1

n¼0

oE

oxlk m; nð Þ
oxlk m; nð Þ

oblk
¼
XM�1

m¼0

XN�1

n¼0
Dl
k m; nð Þ

ð23Þ

Equation (24) shows the contribution of bias and weights

to the next-level input map xlþ1i m; nð Þ: Since bias contri-

bution is a scalar addition, the same for the CNN’s, the bias

sensitivity expression in Eq. (23) can be used for ONNs

too. In order to derive the expression for the weight sen-

sitivities, we can follow the same approach as before: Since

each kernel element, wlþ1
ik r; tð Þ, contributes all the pixels of

the input pixels, xlþ1i m; nð Þ, by using the chain rule, the

weight sensitivities can first be expressed as in Eq. (25) and

then simplified into the final form in Eq. (26).

Recall : xlþ1i m� r; n� tð Þ
�� M�1;N�1ð Þ
Kx;Kyð Þ ¼ blþ1i

þ
PN1

k¼1
Plþ1
i . . .;Wlþ1

i wlþ1
ik r; tð Þ; ylk m; nð Þ

� �
; . . .

� � ð24Þ

oE

owlþ1
ik

r; tð Þ
����
Kx�1;Ky�1ð Þ

0;0ð Þ

¼
Xþr�Kx

m¼r

XNþt�Ky

n¼t

oE

oxlþ1ı m� r; n� rð Þ

� oxlþ1ı m� r; n� tð Þ
oPlþ1

i . . .;Wlþ1
i ylk m; nð Þ;wlþ1

ik r; tð Þ; Þ. . .
� �� �

�
oPlþ1

i . . .;Wlþ1
i ylk m; nð Þ;wlþ1

ik r; tð Þ; Þ. . .
� �� �

oWlþ1
ik ylk m; nð Þ;wlþ1

ik r; tð Þ
� �

�
oWlþ1

ik ylk m; nð Þ;wlþ1
ik r; tð Þ

� �

owlþ1
ik r; tð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð25Þ

where
oxlþ1ı m�r;n�tð Þ

oPlþ1
i

...;Wlþ1
i yl

k
m;nð Þ;wlþ1

ik
r;tð Þ;Þ...ð Þ½ � ¼ 1.

Let rwW
lþ1
ki m; n; r; tð Þ = oWlþ1

ik
yl
k
m;nð Þ;wlþ1

ik
r;tð Þð Þ

owlþ1
ik

r;tð Þ , then it

simplifies to:

oE

owlþ1
ik

r; tð Þ
����
Kx�1;Ky�1ð Þ

0;0ð Þ
¼

XMþr�Kx

m0¼r

XNþt�Ky

n0¼t
Dlþ1
ı m0 � r; n0 � tð Þ�

rWki
Plþ1
i m0; n0; r; tð Þ � rwW

lþ1
ki m0; n0; r; tð Þ

LetrwP
lþ1
i m0; n0; r; tð Þ ¼

rWki
Plþ1
i m0; n0; r; tð Þ � rwW

lþ1
ki m0; n0; r; tð Þ;

oE

owlþ1
ik

r; tð Þ
����
Kx�1;Ky�1ð Þ

0;0ð Þ
¼

XMþr�Kx

m0¼r

XNþt�Ky

n0¼t
Dlþ1
ı m0 � r;m0 � tð Þ�

rwP
lþ1
i m0; n0; r; tð Þ; orletm ¼ m0 � r; n ¼ n0 � t

oE

owlþ1
ik

r; tð Þ
����
Kx�1;Ky�1ð Þ

0;0ð Þ
¼
XM�Kx

m¼0

XN�Ky

n¼0
Dlþ1
ı m; nð Þ�

rwP
lþ1
i mþ r; nþ t; r; tð Þ

)
oE

owlþ1
ik

¼ Conv2Dvar Dlþ1
i ;rwP

lþ1
i

� �

ð26Þ

Note that the first term, Dlþ1
ı m; nð Þ, in Eq. (26) is a 2D

map (matrix) independent from the kernel indices, r and t.

It will be elementwise multiplied by the other two latter

terms, each with the same dimension, (i.e., M-2xN-2 for

Kx = Ky = 3), and created by derivative functions of nodal

and pool operators applied over the pixels of the MxN

output, ylk m; nð Þ, and the corresponding weight value,

wlþ1
ik r; tð Þ. Note that for each shift value, r and t, the weight

is fixed, wlþ1
ik r; tð Þ; however, the pixels are taken from

different (shifted) sections of ylk m; nð Þ. This operation is

illustrated in Fig. 9. Finally, it is easy to see that when the

pool and nodal operators of convolutional neurons are

used, rWki
Plþ1
i m;n;r; tð Þ ¼ 1, rwW

lþ1
ki m;n;r; tð Þ ¼ ylk m;nð Þ,

and thus Eq. (26) simplifies to Eq. (22).

2.2 Implementation

To bring an ONN to a run-time functionality, both FP and

BP operations should properly be implemented based on

the four phases detailed earlier. Then, the optimal operator

set per neuron in the network can be searched by short BP

Fig. 9 Computation of the kernel sensitivities
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training sessions with potential operator set assignments.

Finally, the ONN with the best operators can be trained

over the train dataset of the problem.

As a typical stochastic gradient descent method, BP has

an iterative process where at each iteration, first a forward

propagation (FP) is performed by using the latest kernel

weights and biases that are updated during the last BP

iteration. During the FP, the required derivatives and sen-

sitivities for BP such as f 0 xlk
� �

;ryW
lþ1
ki m; n; r; tð Þ,

rWki
Plþ1i m; n; r; tð Þ and rwW

lþ1
ki m; n; r; tð Þ need to be

computed and stored. In order to accomplish this, we form

a temporary 4D matrix, Wxlþ1i m; n; r; tð Þ ¼ Wlþ1
i ylk mþð
�

r; nþ tÞ;wlþ1
ik r; tð ÞÞ, 8r; t 2 0; 2½ � and 8m; n 2 M � 2;ð

N � 2Þ for each pixel of the input map, xlþ1i m; nð Þ. It will
then be used in the pool operator to create the input map,

xlþ1i m; nð Þ, at the next layer. Basically, the pool operator

will create a 2D matrix out of a 4D matrix. This is illus-

trated in Fig. 10.

Once the Wxlþ1i m; n; r; tð Þ is formed, then the 4D

derivative rWki
Plþ1i m; n; r; tð Þ ¼oPlþ1

i
Wxlþ1

i
m�r;n�t;r;tð Þ½ �

oWlþ1
ik

yl
k
m;nð Þ;wlþ1

ik
ðr;tÞð Þ can

easily be composed by computing the derivative of the

terms, Wlþ1
ik ylk m; nð Þ;wlþ1

ik ðr; t
�� �
, which is the only term

that contains, ylk m; nð Þ, in each xlþ1i m; nð Þ pixel computa-

tion out of pooling the Wxlþ1i m; n; r; tð Þ. Figure 11 illus-

trates this composition. Note that if the pool operator is

‘‘summation,’’ then the pool operator derivative,

rWki
Plþ1i m; n; r; tð Þ ¼ 1, and hence, there is no need to

compute and store them. If the nodal operator is ‘‘multi-

plication,’’ then the two 4D nodal derivatives simplify to

2D (static) maps, i.e., ryW
lþ1
ki m; n; r; tð Þ ¼ wlþ1

ik r; tð Þ, and
rwW

lþ1
ki mþ r; nþ t; r; tð Þ ¼ ylk mþ r; nþ tð Þ. For any

other pool and nodal operator settings, all four 4D maps

should be computed during the FP before each BP iteration.

For instance, assume that for an arbitrary operational

neuron the pool operator is Median and nodal operator is a

sinusoid, i.e.,Wlþ1
ik ylk m; nð Þ;wlþ1

ik r; tð Þ
� �

¼ sin K � ylk m; nð Þ �
�

wlþ1
ik r; tð ÞÞ where K is a constant. Then, the two nodal

derivatives will be: ryW
lþ1
ki m; n; r; tð Þ ¼ Kwlþ1

ik r; tð Þcos K�ð
ylk m; nð Þ � wlþ1

ik r; tð ÞÞ, rwW
lþ1
ki mþr; nþt; r; tð Þ¼Kylk mþ r;ð

nþ tÞ cos K � ylk mþ r; nþ tð Þ � wlþ1
ik r; tð Þ

� �
:

Therefore, both 4D derivative matrices are computed first

during the FP using the latest weight, wlþ1
ik r; tð Þ, and output

ylk m; nð Þ, and stored in this neuron. Similarly for the pool

derivative, rWki
Plþ1i m; n; r; tð Þ, first note that the direct

derivative of the Median Wxlþ1i m; n; r; tð Þ
� �

with respect to

the term, Wlþ1
ik ylk m; nð Þ;wlþ1

ik ðr; t
�� �
, will give a 4D map

where at each pixel location, (m,n), the 2D map at that

locationwill have all the entries 0, except the onewhich is the

median of them. However, when the 4D derivative map,

rWki
Plþ1i m; n; r; tð Þ, is composed by collecting the deriva-

tives that include the term, Wlþ1
ik ylk m; nð Þ;wlþ1

ik ðr; t
�� �
, at a

given pixel location, (m,n), the 2D map at that location may

have any number of 0 s and 1 s since this is the termwhich is

obtained from individual ylk m; nð Þ term derivatives.

The conventional BP iterations are executed iteratively

to update the weights (the kernel parameters) and biases of

each neuron in the ONN until a stopping criterion has been

met such as maximum number of iterations (iterMax) or

the target classification performance (CP*) such as mean

square error (MSE), classification error (CE) or F1. With a

proper learning factor, e, for each BP iteration, t, the update

for weight kernel and bias at each neuron, i, at layer, l, can

be expressed as follows:

Fig. 10 The formation of Wxlþ1i m; n; r; tð Þ and the computation of xlþ1i m; nð Þ
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wl
ik t þ 1ð Þ ¼ wl

ik tð Þ � e
oE

owl
ik

bli t þ 1ð Þ ¼ bli tð Þ � e
oE

obli

ð27Þ

As a result, the pseudo-code for BP can be presented as

in Algorithm 1.

The final task to form the ONN for the learning problem at

hand is the search for the best possible operator set for the

neurons of ONN. For this purpose, in this study we adopted

the greedy iterative search (GIS) [25, 26] due to its sim-

plicity. Since GIS performs layerwise pruned search, the

resultant ONN will have homogenous layers each of which

has neurons with a common operator set. Let fh�Ng be the

operator set library consisting of N operator sets where each

set has a unique nodal, pool and activation operator. With a

given learning objective criterion each pass of GIS seeks for

the best operator set for a particular layer while keeping the

sets of the other layers intact. To accomplish this, one or few

(e.g., NBP = 2) short BP runs each with random parameter

initialization can be performed with each operator set

assigned to that level. The operator set, which yields ONN to

achieve best performance, is then assigned to that layer, and

the GIS continues with the next layer and the pass continues

until the search is carried out for all layers. While always

keeping the best operator set assigned to each layer, few GIS

passes will suffice to form a near-optimal ONN network,

ONN*(h), which can then be trained by BP only if the

learning objective has not yet been accomplished during the

GIS passes. Otherwise, the GIS stops abruptly whenever the

learning objective for the problem in hand is met. The

pseudo-code for a two-pass GIS is given in Algorithm 2.

Fig. 11 Computation of the 4D derivative, rWki
Plþ1i m; n; r; tð Þ, map out of Wxlþ1i m; n; r; tð Þ
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3 Experimental results

In this section, we perform comparative evaluations

between conventional CNNs and ONNs over four chal-

lenging problems: (1) image syntheses, (2) denoising, (3)

face segmentation and (4) image transformation. In order to

demonstrate the learning capabilities of the ONNs better,

we have further taken the following restrictions:

(i) Low resolution: We keep the image resolution

very low, e.g., thumbnail size (i.e., 60 9 60 pix-

els), which makes especially pattern recognition

tasks (e.g., face segmentation) even harder.

(ii) Compact model: We keep the ONN configuration

compact, e.g., only two hidden layers with less

than 50 hidden neurons, i.e., Inx16x32xOut.

Moreover, we shall keep the output layer as a

convolutional layer while optimizing only the two

hidden layers by GIS.

(iii) Scarce train data: For the two problems (image

denoising and segmentation) with train and test

datasets, we shall train the network over a limited

data (i.e., only 10% of the dataset) while testing

over the rest with a tenfold cross-validation.

(iv) Multiple regressions: For the two regression

problems (image syntheses and transformation),

a single network will be trained to regress multiple

(e.g., 4–8) images.

(v) Shallow training: Maximum number of iterations

(iterMax) for BP training will be kept low (e.g.,

max. 80 and 240 iterations for GIS and regular BP

sessions, respectively).

For a fair evaluation, we shall first apply the same

restrictions over the CNNs; however, we shall then relax

them to find out whether CNNs can achieve the same

learning performance level with, e.g., more complex con-

figuration with deeper training over the simplified problem.

3.1 Experimental setup

In any BP training session, for each iteration, t, with the

MSE obtained at the output layer, E(t), a global adaptation

of the learning rate, e, is performed within the range

[5.10-1, 5.10-5], as follows:

eðtÞ ¼
aeðt � 1Þ if EðtÞ\Eðt � 1Þ and aeðt � 1Þ� 5:10�1

beðt � 1Þ if EðtÞ�Eðt � 1Þ and beðt � 1Þ� 5:10�5

eðt � 1Þ else

8
><

>:

9
>=

>;

ð28Þ

where a = 1.05 and b = 0.7, respectively. Since BP train-

ing is a stochastic gradient descent method, for each

problem we shall perform 10 BP runs, each with random

parameter initialization.

The operator set library that is used to form the ONNs to

tackle the challenging learning problems in this study is

composed of a few essential nodal, pool and activation

operators. Table 1 presents the 7 nodal operators along

with their derivatives, rwW
lþ1
ki and ryW

lþ1
ki with respect to

the weight, wlþ1
ik , and the output, ylk, of the previous layer

neuron. Similarly, Table 2 presents the two common pool

operators and their derivatives with respect to the nodal

term,
PNl

k¼1
Wlþ1

i ðwlþ1
ik ; ylkÞ.

Finally, Table 3 presents the two common activation

functions (operators) and their derivatives. Using these

lookup tables, the error at the output layer can be back-

propagated and the weight sensitivities can be computed.

The top section of Table 4 enumerates each potential

operator set, and the bottom section presents the index of

each individual operator set in the operator library, H,

which will be used in all experiments. There is a total of

N = 7 9 2 9 2 = 28 sets that constitute the operator set

library, fh�Ng. Let hi : ipool; iact; inodal
� �

be the ith operator

set in the library. Note that the first operator set, h0 :
0; 0; 0f g with indexi ¼ 0, belongs to the native operators of

a CNN to perform linear convolution with traditional

activation function, tanh.

In accordance with the activation operators used, the

dynamic range of the input/output images in all problems

are normalized in the range of [-1, 1] as follows:

pi ¼ 2
pi �min pð Þ

max pð Þ �min pð Þ � 1 ð29Þ

where pi is the ith pixel value in an image, p.

As mentioned earlier, the same compact network con-

figuration with only two hidden layers and a total of 48

hidden neurons, Inx16x32xOut, is used in all the experi-

ments. The first hidden layer applies subsampling by ssx ¼
ssy ¼ 2; and the second one applies upsampling by

usx ¼ usy ¼ 2.

3.2 Evaluation of the learning performance

In order to evaluate the learning performance of the ONNs

for the regression problems, image denoising, syntheses

and transformation, we used the signal-to-noise ratio

(SNR) evaluation metric, which is defined as the ratio of

the signal power to noise power, i.e.,

SNR ¼ 10log r2signal=r
2
noise

	 

. The ground-truth image is

the original signal, and its difference to the actual output

yields the ‘‘noise’’ image. For the (face) segmentation

problem, with train and test partitions, we used the con-

ventional evaluation metrics such as classification error

(CE) and F1. Given the ground-truth segmentation mask,
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the final segmentation mask is obtained from the actual

output of the network by softmax thresholding. With a

pixelwise comparison, Accuracy (Acc), which is the ratio

of the number of correctly classified pixels to the total

number of pixels, Precision (P), which is the rate of cor-

rectly classified object (face) pixels in all pixels classified

as ‘‘face,’’ and Recall (R), which is the rate of correctly

classified ‘‘face’’ pixels among all true ‘‘face’’ pixels can be

directly computed. Then CE ¼ 1� Acc and

F1 ¼ 2PR= Pþ Rð Þ. The following subsections will now

present the results and comparative evaluations of each

problem tackled by the proposed ONNs and conventional

CNNs.

3.2.1 Image denoising

Image denoising is a popular field where deep CNNs have

recently been applied and achieved the state-of-the-art

performance [30–33]. This was an expected outcome since

‘‘convolution’’ is the basis of the linear filtering and a deep

CNN with thousands of subband filters that can be tuned to

suppress the noise in a near-optimal way is a natural tool

for image denoising. Therefore, in this particular applica-

tion we are in fact investigating whether stacked nonlinear

filters in an ONN can also be tuned for this task and, if so,

whether it can perform equal or better than its linear

counterparts.

In order to perform comparative evaluations, we used

the 1500 images from Pascal VOC database. The gray-

scaled and downsampled original images are the target

outputs, while the images corrupted by Gaussian white

noise (GWN) are the input. The noise level is kept very

high on purpose, i.e., all noisy images have SNR ¼ 0 dB.

The dataset is then partitioned into train (10%) and test

(90%) with tenfold cross-validation. So, for each fold, both

network types are trained 10 times by BP over the train

(150 images) partition and tested over the rest (1350 ima-

ges). To evaluate their best learning performances for each

Table 1 Nodal operators and

derivatives
i Function Wlþ1

i ylk;w
lþ1
ik

� �
rwW

lþ1
ki ryW

lþ1
ki

0 Mul. wlþ1
ik ylk ylk wlþ1

ik

1 Cubic Kwlþ1
ik ðylkÞ

3
KðylkÞ

3
3Kwlþ1

ik ðylkÞ
2

2 Harmonic sin Kwlþ1
ik ylk

� �
Kylkcos Kwlþ1

ik ylk
� �

Kwlþ1
ik cos Kwlþ1

ik ylk
� �

3 Exp. expðwlþ1
ik ylkÞ � 1 ylkexpðwlþ1

ik ylkÞ wlþ1
ik expðwlþ1

ik ylkÞ
4 DoG wlþ1

ik ylk

exp �KDw
lþ1
ik Þ

2ðylkÞ
2

	 
 ylk 1� 2KD wlþ1
ik

� �2ðylkÞ
2

	 


exp �KDðwlþ1
ik Þ

2ðylkÞ
2

	 

wl
ki 1� 2KD wlþ1

ik

� �2ðylkÞ
2

	 


exp �KDðwlþ1
ik Þ

2ðylkÞ
2

	 


5 Sinc sin Kwlþ1
ik ylk

� �
/ ylk Kcos Kwlþ1

ik ylk
� �

Kwlþ1
ik cos Kwlþ1

ik ylk
� �

=ylk
� �

�

sin Kwlþ1
ik ylk

� �
= ylk
� �2	 


6 Chirp sin KCw
lþ1
ik ylk
� �2	 


KC ylk
� �2

cos Kwlþ1
ik ylk
� �2	 


2KCw
lþ1
ik ylkcos KCw

lþ1
ik ylk
� �2	 


Table 2 Pool operators and

derivatives
i Function Plþ1

i . . .;Wlþ1
i ylk;w

lþ1
ik

� �
; . . .

� �
rWki

Plþ1
i

0 Summation PNl

k¼1
Wlþ1

i ðwlþ1
ik ; ylkÞ

1

1 Median median
k

Wlþ1
i ðwlþ1

ik ; ylk
� �

Þ 1 if argmedian Wlþ1
i ðwlþ1

ik ; ylk
� �

¼ k

0 else

�

Table 3 Activation operators

and derivatives
i Function f xð Þ f 0 xð Þ

0 Tangent

hyperbolic

tanh xð Þ ¼ 1�e�2x
1þe�2x 1� f xð Þ2

1 Linear-cut

lin-cut xð Þ ¼
x=cut if xj j � cut
�1 ifx\� cut

1 ifx[ cut

8
<

:

9
=

;

1=cut ; if xj j � cut

0 else

� �
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fold, we selected the best performing networks (among the

10 BP training runs with random initialization). Then, the

average performances (over both train and test partitions)

of the tenfold cross-validation are compared for the final

evaluation.

For ONNs, the layerwise GIS for best operator set is

performed only once (only for the first fold) and then the

same operator set is used for all the remaining folds.

Should it be performed for all the folds, it is likely that

different operator sets that could achieve even higher

learning performance levels could have been found for

ONNs. To further speed up the GIS, as mentioned earlier

we keep the output layer as a convolutional layer while

optimizing only the two hidden layers by GIS. For this

problem (over the first fold), GIS results in operator indices

as 9 for both layers, and it corresponds to the operator

indices: 9:{0, 1, 2} for the pool (summation = 0), activa-

tion (linear-cut = 1) and nodal (sin = 2), respectively.

Figure 12 shows SNR plots of the best CNNs and ONNs

at each fold over both partitions. Obviously, in both train

and test partitions ONNs achieved a significant gap around

1.5 dB. It is especially interesting to see that although the

ONNs are trained over a minority of the dataset (10%), it

can still achieve a similar denoising performance in the test

set (between 5 and 5.5 dB SNR), while the SNR level of

the majority of the (best) CNNs is below 4 dB. The average

SNR levels of the CNN vs. ONN denoising for the train

and test partitions are 5.59 dB vs. 4.1 dB and 5.32 dB vs.

3.96 dB, respectively. For a visual evaluation, Fig. 13

shows randomly selected original (target) and noisy (input)

images and the corresponding outputs of the best CNNs

and ONNs from the test partition. The severe blurring

effect of the linear filtering (convolution) is visible at the

CNN outputs, while ONNs can preserve the major edges

despite the severe noise level induced.

3.2.2 Image syntheses

In this problem we aim to test whether a single network can

(learn to) synthesize one or many images from WGN

images. This is harder than the denoising problem since the

idea is to use the noise samples for creating a certain pat-

tern rather than suppressing them. To make the problem

even more challenging, we have trained a single network to

(learn to) synthesize 8 (target) images from 8 WGN (input)

images, as illustrated in Fig. 14. We repeat the experiment

10 times (folds), so 8 9 10 = 80 images randomly selected

from Pascal VOC dataset. The gray-scaled and downsam-

pled original images are the target outputs, while the WGN

images are the input. For each trial, we performed 10 BP

runs each with random initialization and we select the best

performing network for each run for comparative

evaluations.

As in the earlier application, the layerwise GIS for

seeking the best operator set is performed only once (only

for the first fold) for the two hidden operational layers of

ONNs and then the same operator set is used for all the

remaining folds. Hence, over the first fold, GIS yields the

top-ranked operator set with the operator indices as 3 and

13 for the first and second hidden layers, which correspond

to the operator indices: 1) (0, 0, 3) for the pool (summa-

tion= 0), activation (tanh = 0) and nodal (exp= 3),

respectively, and 2) (0, 1, 6) for the pool (summation= 0),

Fig. 12 Best denoising SNR levels for each fold achieved in train

(top) and test (bottom) partitions

Table 4 Operator enumeration (top) and the index of each operator

set (bottom)

i 0 1 2 3 4 5 6

Pool sum median

Act. tanh lin-cut

Nodal mul. cubic sin exp DoG sinc chirp

H Index Pool Act. Nodal

0 0 0 0

1 0 0 1

2 0 0 2

3 0 0 3

4 0 0 4

5 0 0 5

6 0 0 6

7 0 1 0

8 0 1 1

… … … …
26 1 1 5

27 1 1 6
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activation (linear-cut = 1) and nodal (chirp= 6),

respectively.

Figure 15 shows the SNR plots of the best CNNs and

ONNs among the 10 BP runs for each syntheses experi-

ment (fold). Several interesting observations can be made

from these results. First, the best SNR level that CNNs

have ever achieved is below 8 dB, while this is above

11 dB for ONNs. A critical issue is that at the 4th syntheses

fold, neither of the BP runs is able to train the CNN to be

able to synthesize that batch of 8 images (SNR\- 1.6

dB). Obviously, it either requires more BP runs than 10, or

more likely, it requires a more complex/deeper network

configuration. On the other hand, ONNs never failed to

achieve a reasonable syntheses performance as the worst

SNR level (from fold 3) is still higher than 8 dB. The

average SNR levels of the CNN and ONN syntheses are

5.02 dB and 9.91 dB, respectively. Compared to the

denoising problem, the performance gap significantly

widened since this is now a much harder learning problem.

For a visual comparative evaluation, Fig. 16 shows a ran-

dom set of 14 syntheses outputs of the best CNNs and

ONNs with the target image. The performance gap is also

clear here especially some of the CNN syntheses outputs

have suffered from severe blurring and/or textural artifacts.

3.2.3 Face segmentation

Face or object segmentation (commonly referred as ‘‘Se-

mantic Segmentation’’) in general is a common application

Fig. 13 Some random original (target) and noisy (images) and the

corresponding outputs of the best CNN and ONN from the test

partition

Fig. 14 The outputs of the BP-trained ONN with the corresponding

input (WGN) and target (original) images from the second syntheses

fold
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domain, especially for deep CNNs [34–42]. In this case, the

input is the original image and the output is the segmen-

tation mask which can be obtained by simply thresholding

the output of the network. In this section, we perform

comparative evaluations between CNNs and ONNs for face

segmentation. In [36], an ensemble of compact CNNs was

tested against a deep CNN and this study has shown that a

compact CNN with few convolutional layers and dozens of

neurons is capable of learning certain face patterns but may

fail for other patterns. This was the reason it was proposed

to use an ensemble of compact CNNs in a ‘‘Divide and

Conquer’’ paradigm.

In order to perform comparative evaluations, we used

FDDB face detection dataset [43]. FDDB dataset contains

1000 images with one or many human faces in each image.

We keep the same experimental setup as in image

denoising application: The dataset is partitioned them into

train (10%) and test (90%) with tenfold cross-validation.

So, for each fold, both network types are trained 10 times

by BP over the train (100 images) partition and tested over

the rest (900 images). To evaluate their best learning per-

formances for each fold, we selected the best performing

networks (among the 10 BP training runs with random

initialization). Then, the average performances (over both

train and test partitions) of the tenfold cross-validation are

compared for the final evaluation.

For ONNs, the layerwise GIS for best operator set is

performed only once (only for the first fold). But this time,

in order to see the effect of different operator sets on the

train and test performance, we selected the top first- and

third-ranked operator sets in GIS and used them to create

two distinct ONNs. The top-ranked operator set has the

operator indices as 12 and 2 for the first and second hidden

layers, which correspond to the operator indices: 1) (0, 1, 5)

for the pool (summation= 0), activation (lin-cut = 1) and

nodal (sin = 5), respectively, and 2) (0, 0, 2) for the pool

(summation= 0), activation (tanh= 0) and nodal (sin= 2),

respectively. The third top-ranked operator set has the

operator indices as 10 and 9 for the first and second hidden

layers, which correspond to the operator indices: 1) (0, 1, 3)

for the pool (summation = 0), activation (lin-cut = 1) and

nodal (exp = 3), respectively, and 2) (0, 1, 2) for the pool

(summation = 0), activation (lin-cut = 1) and nodal (sin =

2), respectively. Finally, we label the ONNs with the first-

and third-ranked operators’ sets as, ONN-1 and ONN-3,

respectively.

Figure 17 shows F1 plots of the best CNNs and ONNs at

each fold over both partitions. The average F1 scores of the

CNN vs. (ONN-1 and ONN-3) segmentation for the train

and test partitions are: 58.58% versus (87.4% and 79.86%),

and 56.74% versus (47.96% and 59.61%), respectively. As

expected, ONN-1 has achieved the highest average F1 in

all folds on the train partition and this is around 29% higher

than the segmentation performance of the CNNs. Despite

its compact configuration, this indicates an ‘‘over-fitting’’

since its average generalization performance over the test

partition is around 8% lower than the average F1 score of

CNN. Nevertheless, ONN-3 shows a superior performance

level in both train and test partitions by around 21% and

3%, respectively. Since GIS is performed over the train

partition, ONN-3 may, too, suffer from over-fitting as there

is a significant performance gap between the train and test

partitions. This can be addressed, for instance, by

Fig. 15 Best SNR levels for each syntheses fold achieved by CNNs

(blue) and ONNs (red) (color figure online)

Fig. 16 A random set of 14 syntheses outputs of the best CNNs and

ONNs with the target images. The WGN input images are omitted
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performing GIS over a validation set to find out the (near-)

optimal operator set that can generalize the best.

3.2.4 Image transformation

Image transformation (or sometimes called as image

translation) is the process of converting one (set of)

image(s) to another. Deep CNNs have recently been used

for certain image translation tasks [44], [45] such as edge-

to-image, gray-scale-to-color image, day-to-night (or vice

versa) photograph translation, etc. In all these applications,

the input and output (target) images are closely related. In

this study we tackled a more challenging image transfor-

mation, which is transforming an image to entirely differ-

ent image. This is also much harder than the image

syntheses problem because this time the problem is the

creation of a (set of) image(s) from another with a distinct

pattern and texture.

To make the problem even more challenging, we have

trained a single network to (learn to) transform 4 (target)

images from 4 input images, as illustrated in Fig. 18 (left).

In the first fold, we have further tested whether the net-

works are capable of learning the ‘‘inverse’’ problems,

which means the same network can transform a pair of

input images to another pair of output images and also do

the opposite (output images become the input images).

Images used in the first fold are shown in Fig. 18 (left). We

repeat the experiment 10 times using the close-up ‘‘face’’

images most of which obtained from the FDDB face

detection dataset [43]. The gray-scaled and downsampled

images are used as both input and output. For CNNs, we

performed 10 BP runs each with random initialization, and

for comparative evaluations, we select the best performing

network for each run. For ONNs, we perform 2-pass GIS

for each fold and each BP run within the GIS is repeated 10

times to evaluate the next operator set assigned.

In the first fold, the outputs of both networks are shown

in Fig. 18 (right). The GIS results in the optimal operator

set that has the operator indices as 0 and 13 for the first and

second hidden layers, and this corresponds to the operator

indices: 1) 0:{0, 0, 0} for the pool (summation = 0), acti-

vation (tanh = 0) and nodal (mul = 0), respectively, and 2)

13:{0,1,6} for the pool (summation = 0), activation (lin-

cut = 1) and nodal (chirp = 6), respectively. The average

SNR level achieved is 10.99 dB, which is one of the

highest SNR achieved among all tenfold despite the fact

that in this fold ONNs are trained for the transformation of

two inverse problems. On the other hand, we had to use

three distinct configurations for CNNs. Because the CNN

with the default configuration, and the populated configu-

ration, CNNx4, that is a CNN with the number of hidden

neurons twice the default number (2 9 48 = 96 neurons),

both failed to perform a reasonable transformation. Even

though CNN 9 4 has twice as much hidden neurons (i.e.,

1 9 32 9 64 9 1) and around 4 times more parameters,

the best BP training among 10 runs yields the average

SNR = 0.172 dB, which is slightly higher than the average

SNR = 0.032 dB obtained by the CNN with the default

configuration. Even though we later simplified the problem

significantly by training a single CNN for transforming

only one image (rather than 4) while still using the

CNN 9 4 configuration, the average SNR improved to

2.45 dB which is still far below the acceptable performance

level since the output images are still unrecognizable.

Fig. 17 Best segmentation F1 levels for each fold achieved in train

(top) and test (bottom) partitions by ONN-1 (solid-red), ONN-3

(dashed-red) and CNN (solid-blue) (color figure online)

Network

Input Target ONN CNN CNNx4 CNNx4

4 4 4 4 4 4 1 1

Fig. 18 Image transformation of the first fold including two inverse

problems (left) and the outputs of the ONN and CNN with the default

configuration, and the two CNNs (CNNx4) with 4 times more

parameters. On the bottom, the numbers of input ? target images are

shown
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Figure 19 shows the results for the image transforma-

tions of the third and fourth folds. A noteworthy difference

with respect to the first fold is that in both folds, the 2-pass

GIS results in a different operator set for the first hidden

layer, which has the operator indices: 1) 3:{0,0,3} for the

pool (summation = 0), activation (tanh = 0) and nodal

(exp = 3), respectively. The average SNR levels achieved

are 10.09 dB and 13.01 dB, respectively. In this figure, we

skipped the outputs of the CNN with the default configu-

ration since, as in the first fold, it has entirely failed (i.e.,

average SNRs are - 0.19 dB and 0.73 dB, respectively).

This is also true for the CNN 9 4 configuration even

though a significant improvement is observed, i.e., average

SNR levels are 1.86 dB and 2.37 dB, respectively. An

important observation is that these levels are significantly

higher than the corresponding SNR level for the first fold

since both folds (transformations) are relatively easier than

the transformation of the two inverse problems in the first

fold. However, the transformation quality is still far from

satisfactory. Finally, when the problem is significantly

simplified as before, that is, a single CNN is trained to learn

transformation for only one image pair (1 ? 1), then

CNNx4 can then achieve the average SNR level of

2.54 dB, which still makes it far from being satisfactory.

This is true for the remaining folds, and over the tenfold,

the average SNR levels for ONNs, CNNs and the two

CNNx4 configurations are: 10.42 dB, - 0.083 dB,

0.24 dB (4 ? 4) and 2.77 dB (1 ? 1), respectively. This

indicates that a significantly more complex and deeper

configuration is needed for CNNs to achieve a reasonable

transformation performance.

In order to further investigate the role of the operators

on the learning performance, we keep the log of operator

sets evaluated during the 2-pass GIS. For the first fold of

the image transformation problem, Fig. 20 shows the

average MSE obtained during the 2-pass GIS. Note that the

output layer’s (layer 3) operator set is fixed as, 0:{0,0,0} in

advance, and excluded from GIS. This plot clearly indi-

cates which operator sets are the best-suited for this

problem and which are not. Obviously, the operator sets

with indices, 6:{0, 0, 6} and 13:{0, 1, 6} in layer 2, got the

top ranks, both of which use the pool operator summation

and the nodal operator, chirp. For layer 1, both of them

favors the operator set with index 0:{0,0,0}. Interestingly,

the third-ranked operator set is 13:{0,1,6} in layer 2 and

16:{1,2,6} in layer 1, for the pool (median = 1), activation

(tanh = 0) and nodal (sin = 2), respectively. The pool

operator, median, is also used in the fifth-ranked operator

set for layer 1 too. For all the problems tackled in this

study, although it never got to the top-ranked operator set

for any layer, it has obtained second or third ranks in some

of the problems. Finally, an important observation worth

mentioning is the ranking of the native operator set of a

CNN with operator index, 0:{0,0,0}, which was evaluated

twice during the 2-pass GIS. In both evaluations, among

the 10 BP runs performed, the minimum MSE obtained

was close to 0.1 which makes it the 17th and 22nd best

operator set among all the sets evaluated. This means that

there are at least 16 operator sets (or equivalently 16 dis-

tinct ONN models each with different operator sets but the

same network configuration) which will yield a better

transformation performance than the CNN’s. This is, in

fact, a ‘‘best-case’’ scenario for CNNs because:

(1) GIS cannot evaluate all possible operator set

assignments to the two hidden layers (1 and 2). So

there are possibly more than 16 operator sets which

can yield a better performance than CNN’s.

Input Target ONN CNNx4 CNNx4

4 4 4 4 1 1Network

Input Target ONN

4 4 4 4 1 1

CNNx4 CNNx4

Network

Fig. 19 Image transformations of the third (top) and fourth (bottom)

folds and the outputs of the ONN, and the two CNNs (CNNx4) with 4

times more parameters. On the bottom, the numbers of input ? target

images are shown
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(2) If we would not have fixed the operator set of the

output layer to 0:{0,0,0}, it is possible to find much

more operator assignments to all three layers (2

hidden ? 1 output) that may even surpass the

performance levels achieved by the top-ranked

operator sets, (0,13,0).

3.3 Computational complexity analysis

In this section the computational complexity of an ONN is

analyzed with respect to the CNN with the same network

configuration. There are several factors that affect the

computational complexity of an ONN. We shall begin with

the complexity analysis of the forward propagation (FP)

and then focus on BP.

During FP, the computational difference between an

ONN and CNN solely lies in the choice of the operator sets

for each neuron/layer. Assuming a unit computational

complexity for the operators of CNN (mul, tanh and sum),

Table 5 presents the relative computational complexity

factors of the sample operators used in this study. In the

worst-case scenario, if sinc, median and tanh are used as

the operator set for each neuron in the network, then a FP

in an ONN will be 2.70 9 3.21 9 1 = 8.68 times slower

than the one in CNN with the same configuration. In the

sample problems addressed in this study, the pool operator

determined by 2-pass GIS was always summation; there-

fore, this ‘‘worst-case’’ figure would only be 2.704 times.

In practice, we observed a speed deterioration in ONNs

usually between 1.4 and 1.9 times with respect to the

corresponding FP speed of the (equivalent) CNN. When

the configuration CNNx4 was used, ONN’s speed became

more than twice faster.

During BP, the computational complexity differences

between an ONN and a CNN (having the same configu-

ration) occur at the substeps (i–iii) as given in Algorithm 1.

The fourth substep (iv) is common for both.

First, the FP during a BP iteration computes all the BP

elements as detailed in Algorithm 1, i.e., for each neuron, k,

at each layer, l, f 0 xlk
� �

;ryW
lþ1
ki , rWki

Plþ1i and rwW
lþ1
ki .

Only the first BP element, f 0 xlk
� �

, is common with the

conventional BP in CNNs, the other three are specific for

ONNs and, therefore, cause extra computational cost. Once

again when the native operator set of CNNs, 0:{0,0,0} is

used, then rWki
Plþ1i ¼ 1;ryW

lþ1
ki ¼ wlþ1

ik and rwW
lþ1
ki ¼ ylk

all of which are fixed and do not need any computation

during FP. For the other operators, by assuming again a

unit computational complexity for the operators of CNN

(mul, tanh and sum), Table 6 presents the relative com-

putational complexity factors of the sample operators used

in this study. In the worst-case scenario, if sinc, median and

tanh are used as the operator set for each neuron in the

network, then a FP during a BP iteration will be 1.72 9

8.50 9 1 = 14.63 times slower than the one in CNN with

the same configuration. Once again since the pool operator

determined by 2-pass GIS for the sample problems

addressed in this study, was always summation, this

‘‘worst-case’’ figure would be 8.504 times. In practice, we

observed a speed deterioration for the FP in each BP iter-

ation usually between 2.1 and 5.9 times with respect to the

corresponding speed of the (equivalent) CNN.

Fig. 20 MSE plot during the 2-pass GIS operation for the first fold.

The top 5-ranked operator sets found in three layers (third, second,

first) are shown in parentheses. The native operator set of CNNs, (0, 0,

0), with operator set index 0, can get the 17th and 22nd ranks among

the operator sets searched
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The second step (ii) is actual back-propagation of the

error from the output layer to the first hidden layer to

compute delta error of each neuron, k, Dl
k at each layer, l.

This corresponds to the first three BP phases as detailed in

Sect. 2.1. The first phase, the delta error computation at the

output layer common for ONNs and CNNs, has the same

computational complexity. In the second phase, that is the

inter-BP among ONN layers, a direct comparison between

Eqs. (12) and (16) will indicate that for each BP step from

the next layer to the current layer, i.e., Dylk �
P

Dlþ1
ı , the

difference lies between the convolution of the next layer

delta error, Dlþ1
ı with the static (or fixed kernel)

rot180 wlþ1
ik

� �
and the varying (kernel) ryP

lþ1
i . The latter is

obtained by elementwise multiplication of the two

derivatives stored in 4D matrices, rWki
Plþ1i and ryW

lþ1
ki ,

both of which are already computed during the last FP. It is

clear that there is no computational complexity difference

between the two (fixed vs. varying) convolutions.

The third phase, the intra-BP within an ONN neuron, is

also a common operation with a CNN neuron and thus has

the same computational cost. Finally, for the last phase (or

step (iii) in Algorithm 1), the computation of the weight

and the bias sensitivities, a direct comparison between

Eqs. (22) and (26) will indicate that the same computa-

tional complexity (as in the second phase) exists between

the convolution of the next layer delta error, Dlþ1
ı with the

static output, ylk and the varying (sensitivity), rw Plþ1i .

Finally, the fourth and last step of the BP given in Algo-

rithm 1 is the update of the weights and biases. As a

common step, obviously it has also the same computational

complexity. Overall, once the BP elements, f 0 xlk
� �

;ryW
lþ1
ki ,

rWki
Plþ1i , rwW

lþ1
ki and ryP

lþ1
i ¼ rWki

Plþ1i �ryW
lþ1
ki with

rw Plþ1i ¼ rWki
Plþ1i �rwW

lþ1
ki are all computed during

FP, the rest of the BP phases of ONN will have the same

computational complexity as in the corresponding phases

for CNNs. So the overall BP speed of ONNs deteriorates

due to increased computational complexity of the prior FP.

In practice, we observed a speed deterioration for each BP

iteration (including FP) usually between 1.5 and 4.7 times

with respect to the corresponding speed of a BP iteration in

the (equivalent) CNN.

4 Conclusions

The ONNs proposed in this study are inspired from two

basic facts: (1) Bioneurological systems including the

mammalian visual system are based on heterogeneous,

nonlinear neurons with varying synaptic connections, and

(2) the corresponding heterogeneous ANN models encap-

sulating nonlinear neurons (aka GOPs) have recently

demonstrated such a superior learning performance that

cannot be achieved by their conventional linear counter-

parts (e.g., MLPs) unless significantly deeper and more

complex configurations are used [25–28]. Empirically

speaking, these studies have proven that only the hetero-

geneous networks with the right operator set and a proper

training can truly provide the required kernel transforma-

tion to discriminate the classes of a given problem or to

approximate the underlying complex function. In neuro-

biology this fact has been revealed as the ‘‘neurodiversity’’

or, more precisely, ‘‘the biochemical diversity of the

synaptic connections.’’ Accordingly, this study has begun

from the point where the GOPs have left over and has

extended it to design the ONNs in the same way MLPs

have been extended to realize conventional CNNs. Having

the same two restrictions, i.e., ‘‘limited connections’’ and

‘‘weight sharing,’’ heterogeneous ONNs can now perform

any (linear or nonlinear) operation. Our intention is thus to

evaluate convolutional versus operational layers/neurons;

hence, we excluded the fully connected layers to focus

solely on this objective. Moreover, we have selected very

challenging problems while keeping the network configu-

rations compact and shallow, and BP training brief. Further

restrictions are applied on ONNs such as a limited operator

set library with only 7 nodal and 2 pool operators, and the

2-pass GIS is performed to search for the best operators

only for the two hidden layers while keeping the output

layer as a convolutional layer. As a result, such a restricted

and layerwise homogenous (networkwise heterogeneous)

ONN implementation has allowed us to evaluate its

‘‘baseline’’ performance against the equivalent and much

complex CNNs.

Table 5 Computational complexity factors of each sample nodal,

activation and pool operator compared to the operators of CNN (mul,

tanh and sum) during the FP

Nodal (W) Act. (f) Pool (P)

cubic sin exp DoG sinc chirp lin-cut median

1.01 2.21 1.78 2.55 2.70 2.41 0.99 3.21

Table 6 Computational complexity factors of each sample nodal,

activation and pool operator compared to the operators of CNN (mul,

tanh and sum) during the FP in a BP iteration

Nodal (W) Act. (f) Pool (P)

cubic sin exp DoG sinc chirp lin-cut median

2.57 6.21 5.08 7.85 8.50 6.11 0.99 1.72
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In all problems tackled in this study, ONNs exhibit a

superior learning capability against CNNs and the perfor-

mance gap widens when the severity of the problem

increases. For instance, in image denoising, the gap between

the average SNR levels in train partition was around 1.5 dB

(5.59 dB vs. 4.1 dB). On a harder problem, image syntheses,

the gap widens to near 5 dB (9.91 dB vs. 5.02 dB), and on

few folds, CNN failed to synthesize the image with a rea-

sonable quality. Finally, on the hardest problem among all,

image transformation, the gap exceeded beyond 10 dB

(10.94 dB vs.- 0.08 dB); in fact, the CNN with the default

configuration has failed to transform in all folds. This is also

true even though when 4 times more complex CNNmodel is

used and the problem is significantly simplified (only one

image transformation rather than (4)). This is actually not

surprising since a detailed analysis performed during the

2-pass GIS has shown that there are at least 16 other potential

ONN models with different operator sets that can perform

better than the CNN. So for some, relatively easier, problems

‘‘linear convolution’’ for all layers can indeed be a reason-

able or even a suboptimal choice (e.g., object segmentation

or even for image denoising), whereas for harder problems,

CNNs may entirely fail (e.g., image syntheses and transfor-

mation) unless significantly deeper and more complex con-

figurations are used. The problem therein lies mainly in the

‘‘homogeneity’’ of the networkwhen the same operator set is

used for all neurons/layers. This observation has verified in

the first fold of the image transformation problem where it

sufficed to use a different nonlinear operator set only for a

single layer (layer 2, operator set, 13:{0,1,6}), while all other

layers are convolutional. This also shows how crucial it is to

find the right operator set for each layer. Overall, it is a fact

that for a particular problem, in any scale or configuration,

ONNs cannot performworse thanCNNs, deep and/or state of

the art, with equal configuration simply because ONNs are

the ‘‘superset’’ of CNNs, i.e., an ONNwill simply turn out to

be a CNN (homogenous and all-linear neuron model) if the

GIS results in favoring the ‘‘convolution’’ operator set (linear

nodal operator, summation pool operator and tanh activation

function) for all layers/neurons for that problem. Otherwise,

this means that another nonlinear operator set (for one or

more layers) outperforms ‘‘convolution’’ and hence results a

better learning performance.

There are several ways to improve this ‘‘baseline’’ ONN

implementation some of which can be listed as below:

• enriching the operator set library by accommodating

other major pool and nodal operators,

• forming layerwise heterogeneous ONNs (e.g., by

exploiting [28]) for a superior diversity,

• adapting a progressive formation technique with

memory

• and instead of a greedy-search method such as GIS over

a limited set of operators, using a global search

methodology which can incrementally design the

optimal nonlinear operator during the BP iterations.

These will be the topics for our future research.
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Appendix

Back-propagation for GOPs

The conventional back-propagation (BP) training consists

of one forward propagation (FP) pass to compute the error

at the output layer following with an error back-propaga-

tion pass starting from the output layer back to the first

hidden layer, in order to calculate the individual weight and

bias sensitivities in each neuron. The most common error

metric is the mean square error (MSE) in the output layer

that can be expressed as follows:

E ¼ E yL1 ; . . .; y
L
NL

	 

¼ 1

NL

XNL

i¼1
yLi � ti
� �2

: ð30Þ

For an input vector p, and its corresponding output vector,

yL1 ; . . .; y
L
NL

h i
, BP aims to compute the derivative of E with

respect to an individual weight ;wl
ik (between the neuron i

and the output of the neuron k in the previous layer, l-1),

and bias, bli; so that we can perform gradient descent

method to minimize the error accordingly:

oE

owl
ik

¼ oE

oxli

oxli
owl

ik

and
oE

obli
¼ oE

oxli

oxli
obli
¼ oE

oxli
ð31Þ

Both derivatives depend on the sensitivities of the error to

the input, xli. These sensitivities are usually called as delta

errors. Let Dl
i ¼ oE=oxli be the delta error of the ith neuron

at layer l. Now we can write the delta error by one-step

backward propagation from the output of that neuron, yli, as

follows:
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Dl
i ¼

oE

oxli
¼ oE

oyli

oyli
oxli
¼ oE

oyli
f 0 xli
� �

ð32Þ

This means that after we find the derivative of the error to

the output, oE=oyli, we can then find the delta error. For the

output layer, l = L, we know both terms:

DL
i ¼

oE

oxLi
¼ f 0 xLi

� �
yLi � ti
� �

ð33Þ

Therefore, for both GOPs and MLPs, the delta error for

each neuron at the output layer can be directly computed.

One can also observe that Eqs. (31)–(33) are also common

for both network types. However, the back-propagation of

the delta error from the current layer (say l ? 1) to the

previous layer, l, will be quite different. First consider for

MLPs that Eq. (2) exhibits the contribution of the output of

the kth neuron in the previous layer, ylk, to the input of each

neurons of the current layer with individual weights, wlþ1
ik .

With this in mind, one can express the derivative of the

error to the output of the previous layer neuron, oE
oyl

k

, as

follows:

oE

oylk
¼
XNlþ1

i¼1

oE

oxlþ1i

oxlþ1i

oylk
¼
XNlþ1

i¼1
Dlþ1
i wlþ1

ik ð34Þ

Now one can use Eq. (32) to lead to a generic equation of

the back-propagation of the delta errors, as follows:

Dl
k ¼

oE

oxlk
¼ oE

oylk
f 0 xlk
� �
¼ f 0 xlk

� �XNlþ1

i¼1
Dlþ1
i wlþ1

ik ð35Þ

So, for MLPs another linear transformation with the same

weights is used to back-propagate the delta errors of the

current layer to compute the delta errors of the previous

layer. For GOPs, this turns out to be a different scheme.

From Eq. (2) the same output derivative, oE=oylk, can be

expressed as follows:

oE

oylk
¼
XNlþ1

i¼1

oE

oxlþ1i

oxlþ1i

oylk

¼
PNlþ1

i¼1
Dlþ1
i

oxlþ1i

oPlþ1i

oPlþ1i

oWlþ1
i wlþ1

ki ; ylk
� �

oWlþ1
i wlþ1

ki ; ylk
� �

oylk

ð36Þ

where oxlþ1i =oPlþ1i ¼ 1. Let rWki
Plþ1i ¼ oPlþ1

i

oWlþ1
i wlþ1

ki
;yl

kð Þ and,

ryW
lþ1
ki ¼

oWlþ1
i wlþ1

ki
;yl

kð Þ
oyl

k

. Then Eq. 36 becomes:

oE

oylk
¼
XNlþ1

i¼1
Dlþ1
i rWki

Plþ1i ryW
lþ1
ki ð37Þ

Obviously both rWki
Plþ1i and ryW

lþ1
ki will be different

functions for different nodal and pool operators. From the

output sensitivity, oE=oylk, one can get the delta of that

neuron, Dl
k, which leads to the generic equation of the

back-propagation of the delta errors for GOPs, as follows:

Dl
k ¼

oE

oxlk
¼ oE

oylk
f 0 xlk
� �

¼ f 0 xlk
� � PNlþ1

i¼1
Dlþ1
i rWki

Plþ1i ryW
lþ1
ki

ð38Þ

Once all the delta errors in each layer are formed by back-

propagation, then weights and bias of each neuron can be

updated by the gradient descent method. Note that a bias

sensitivity in GOPs is identical as MLPs,

oE

oblk
¼ Dl

k ð39Þ

For the weight sensitivity, one can express the chain rule of

derivatives as,

oE

owlþ1
ki

¼ oE

oxlþ1i

oxlþ1i

owlþ1
ki

¼ Dlþ1
i

oxlþ1i

oPlþ1i

oPlþ1i

oWlþ1
i wlþ1

ki ; ylk
� � oW

lþ1
i wlþ1

ki ; ylk
� �

owlþ1
ki

ð40Þ

where oxlþ1i =oPlþ1i ¼ 1. Let rwW
lþ1
ki ¼

oWlþ1
i wlþ1

ki
;yl

kð Þ
owlþ1

ki

. Then

Eq. (39) simplifies to

oE

owlþ1
ki

¼ Dlþ1
i rWki

Plþ1i rwW
lþ1
ki ð41Þ

For different nodal operators along with their derivatives,

rwW
lþ1
ki andryW

lþ1
ki with respect to theweight,wlþ1

ki , and the

output, ylk, of the previous layer neurons, Eqs. (39) and (41)

will yield the weight and bias sensitivities. Therefore, the

operator set of each neuron should be assigned before the

application of BP training. However, this is a typical

‘‘Chicken and Egg’’ problem because finding out the right

operators even for a single neuron eventually requires a

trained network to evaluate the learning performance. Fur-

thermore, the optimality of the operator set of that neuron

obviously depends on the operators of the other neurons

since variations in the latter can drastically change the

optimality of the earlier operator choice for that neuron. The

greedy iterative search (GIS) was proposed in [27] and [28].

The basic idea of GIS is to reduce the search space signifi-

cantly so that the layerwise pruned search finds near-optimal

operator sets per layer (for all neurons in that layer).
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