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a b s t r a c t

Discriminative learning based on convolutional neural networks (CNNs) aims to perform image
restoration by learning from training examples of noisy-clean image pairs. It has become the go-
to methodology for tackling image restoration and has outperformed the traditional non-local class
of methods. However, the top-performing networks are generally composed of many convolutional
layers and hundreds of neurons, with trainable parameters in excess of several million. We claim that
this is due to the inherently linear nature of convolution-based transformation, which is inadequate
for handling severe restoration problems. Recently, a non-linear generalization of CNNs, called the
operational neural networks (ONN), has been shown to outperform CNN on AWGN denoising. However,
its formulation is burdened by a fixed collection of well-known non-linear operators and an exhaustive
search to find the best possible configuration for a given architecture, whose efficacy is further limited
by a fixed output layer operator assignment. In this study, we leverage the Taylor series-based function
approximation to propose a self-organizing variant of ONNs, Self-ONNs, for image restoration, which
synthesizes novel nodal transformations on-the-fly as part of the learning process, thus eliminating the
need for redundant training runs for operator search. In addition, it enables a finer level of operator
heterogeneity by diversifying individual connections of the receptive fields and weights. We perform
a series of extensive ablation experiments across three severe image restoration tasks. Even when
a strict equivalence of learnable parameters is imposed, Self-ONNs surpass CNNs by a considerable
margin across all problems, improving the generalization performance by up to 3 dB in terms of PSNR.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Image restoration aims at recovering low-level contextual
nformation from noisy and corrupted images. It is one of the
ey inverse imaging computer vision tasks because the qual-
ty of image acquisition is inherently subdued by environmen-
al conditions, quality of the image capturing device, and
rocesses involved in obtaining a digital image from photosen-
ors. The earliest works were based on the basic assumption
hat smoothing by averaging leads to denoising (Alvarez, Lions, &
orel, 1992; Donoho, 1995; Smith & Brady, 1997). Such methods
ere then surpassed by the non-local class of methods (Buades,
oll, & Morel, 2005; Mahmoudi & Sapiro, 2005; Mairal, Bach,
once, Sapiro, & Zisserman, 2009), among which the method
M3D (Dabov, Foi, Katkovnik, & Egiazarian, 2007) is widely con-
idered to be state-of-the-art. In recent years, the focus has
hifted towards learning the restoration problem, by posing it
n a discriminative paradigm of training on noisy-clean image
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pairs. Convolutional Neural Networks (CNNs)-based approaches
have rapidly reached apex performance in almost all learning-
based computer vision problems (He, Zhang, Ren, & Sun, 2016;
Krizhevsky, Sutskever, & Hinton, 2012; Shelhamer, Long, & Dar-
rell, 2017), and image restoration is no exception (Lempitsky,
Vedaldi, & Ulyanov, 2018; Zhang, Zuo, Chen, Meng & Zhang, 2017;
Zhang, Zuo, Gu & Zhang, 2017).

CNNs are artificial neural networks composed of stacked lay-
ers of convolutional neurons, each filtering local receptive fields
within the input feature maps by convolving them with learn-
able filter banks. Their weight sharing and local connections
significantly reduce the size of parameter space as compared to
multilayer perceptrons (MLPs) and make them especially effi-
cient for large grid-structured data such as images. While the
earlier CNN models were not particularly deep (LeCun, Bottou,
Bengio, & Haffner, 1998), faster implementations on GPU (Cires,
Meier, Masci, & Gambardella, 2003) ushered in an era of deeper
and more complex architectures (Dabov et al., 2007; Mahmoudi
& Sapiro, 2005). Contemporary CNN architectures are generally
composed of tens of layers and their performance is generally
observed to be correlated with their depth (number of layers)
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Conneau, Schwenk, Le Cun, & Barrault, 2017). Some of the state-
f-the-art CNNs for image restoration consist of learnable pa-
ameters in the order of millions (Zou, Lan, Zhong, Liu, & Luo,
019), despite dealing with mild restoration problems where
he corrupted images still retain most of the semantic infor-
ation. Moreover, a significant amount of training resources is

equired to train deep architectures in order to avoid overfitting
nd ensure proper generalization.
Despite their wide-scale adoption, as identified in Kiranyaz,

nce, Iosifidis and Gabbouj (2020), Kiranyaz, Malik et al. (2020),
he necessity of deeper and wider CNN architectures stems from
ome of the inherent drawbacks in the convolutional model.
irstly, the convolutional neuron model implies a strict linear
ransformation, where the only source of non-linearity may stem
rom the point-wise non-linear activation. Therefore, a very high
umber of neurons with interwoven non-linear activations is
equired in order to synthesize a rich enough hypothesis for chal-
enging restoration problems. A remedy to this has been recently
roposed in Kiranyaz, Ince et al. (2020), Kiranyaz, Malik et al.
2020) using the so-called Operational Neural Networks (ONNs)
hich embed non-linear operations inside the patch-wise trans-

ormations as an alternative to the linear convolutional model.
pecifically, the linear transformation of weight multiplications
nd additions (forming the convolution operation) are general-
zed to non-linear mappings, called nodal and pool functions,
espectively. These nonlinear mappings are defined in an operator
et library and searched for each learning problem individually.
imilar to their predecessors, Generalized Operational Percep-
rons (GOPs), which were shown to be superior to traditional
ulti-Layer Perceptrons (MLPs) (Kiranyaz, Ince, Iosifidis, & Gab-
ouj, 2017a, 2017b; Tran, Kiranyaz, Gabbouj, & Iosifidis, 2020a,
020b), ONNs were shown to outperform equivalent and even
eeper CNN architectures across a variety of computer vision
roblems, including AWGN image denoising (Kiranyaz, Ince et al.,
020; Kiranyaz, Malik et al., 2020).
In ONNs, the choices for nodal and pool operators are critical

owards generating an optimal degree of non-linearity for a given
roblem. While their generic formulation enables the flexibility
o incorporate any non-linear transformation, their efficacy relies
n two key factors; (i) curation of a diverse enough operator
et library and (ii) the selection of the optimal operators for the
roblem at hand. In the case of the former, it is possible that
he optimal non-linear transformation required for the restora-
ion problem cannot be expressed by a well-known function
uch as a sinusoid or an exponential function. Therefore, there
lways stands a possibility that the operator set library, no mat-
er how large it is, remains insufficient. Secondly, the search
aradigms used in Kiranyaz, Ince et al. (2020) and Kiranyaz, Malik
t al. (2020); Greedy Iterative Search (GIS) and Synaptic Plasticity
onitoring (SPM) respectively, both require additional training

uns for each learning problem, in order to converge towards
n optimal set of operators per hidden layer. Therefore, using
NNs for the image restoration problem would imply selecting
n appropriate operator set library and searching over it sep-
rately for each of the noise characteristics being studied. This
akes their usage cumbersome and perhaps impractical for large
atasets. Moreover, even if an ideal convergence is assumed, GIS-
ased operator search only yields a homogeneous configuration
f layers i.e. all neurons in a given layer are limited to having the
ame non-linear transformation. Extending it for a heterogeneous
onfiguration, where each neuron has a distinct operator set,
ould make the search prohibitively expensive. The SPM method
roposed in Kiranyaz, Malik et al. (2020) remedies this, but it
elies on a suitable initial random assignment of operators to
eurons and makes a strong assumption that the choice of the
perator of a neuron in a layer does not affect the other neurons
f the current layer and the neurons in the previous layer.
202
In order to solve severe and diverse restoration problems, we
identify the need for a self-reliant alternative to convolutional
neurons for embedding non-linearities, without the need for ad-
ditional training runs, as in ONNs. To accomplish this objective in
this study, we make the following contributions:

– we propose, Self-ONN, a self-organized variant to the ONN
which does not require prior curation of an operator set
library and consequently, the need to search over it. Self-
ONNs with generative neurons can leverage the Taylor
series-based approximation to generate ‘‘any’’ nodal opera-
tor, which is optimized as part of the learning process, thus
voiding the need for any prior training runs.

– we compare the proposed approach with equivalent CNN
and ONN architectures having the same number of learning
units (neurons) and network parameters. The experiments
are conducted on severely corrupted images and tested on
five benchmark datasets and three different noise types.

An extensive set of experimental results demonstrates that the
proposed Self-ONNs exhibit a superior generalization and train-
ing performance compared to both equivalent ONNs and CNNs
across all image restoration problems. The rest of the paper is
structured as follows: In Section 2, we briefly describe some
of the contemporary methods employed for image restoration.
Section 3 provides technical details of Self-ONNs by comparing
their formulation to vanilla ONNs and CNNs. Section 4 elucidates
the experimental setup and the characteristics of networks and
datasets used in this study. Section 5 provides key insights into
the results and findings of the study, while Section 6 concludes
the paper and suggests possible future research directions.

2. Related work

Prior to the advent of CNN-based discriminative learning,
the non-local class of methods dominated the field of image
restoration (Buades et al., 2005; Mahmoudi & Sapiro, 2005; Mairal
et al., 2009). Arguably, the most successful technique belonging
to this class is that of BM3D (Dabov et al., 2007). The method
works by creating a pool of similar non-local patches across
the image. A collaborative filtering procedure is subsequently
applied where the pools of patches are projected to a higher-
dimensional space and denoised by shrinking the transform co-
efficients. Recently, CNNs have become the de-facto standard.
Earlier, in Burger, Schuler, and Harmeling (2012), it was observed
that an MLP can be trained to competitively reproduce the results
of BM3D. In Zhang, Zuo, Chen et al. (2017), a deep CNN architec-
ture was proposed that successfully applied batch normalization
and residual learning principles to achieve competitive results for
various degrees of AWGN. The study in Zhang, Zuo, and Zhang
(2018) aimed to incorporate spatial-invariance by proposing to
supplement the inputs with an additional noise map so that the
CNN can learn spatially-invariant encodings for denoising. In Tian,
Xu, and Zuo (2020), the residual framework adopted in Zhang,
Zuo, Chen et al. (2017) is used and extended with batch renor-
malization and dilated convolutions to address the problems with
small mini-batch and limited receptive fields, respectively. In
Zhang, Zuo, Gu et al. (2017), the discriminative learning paradigm
is integrated as a modular part of model-based optimization by
utilizing the variable-splitting technique. The model architecture
employed is similar to that used in Zhang, Zuo, Chen et al.
(2017). The authors of Zou et al. (2019) employed a very deep
network, composed of 52 layers, with a global and a local residual
framework to tackle high-level AWGN denoising. Generally, the
proposed CNN-based methods employ considerably deep archi-
tectures and learn from large-scale datasets; consisting of training
examples in the order of 105. Moreover, the noise characteristics
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f input images are generally mild and preserve the contextual
nformation of the image quite well. Therefore, there is a need to
valuate learning models for restoring highly corrupted images
aving diverse and severe noise characteristics. Furthermore, as
f now, there exists scarce literature that explores the possibility
f exploiting non-linearity in the realm of CNNs for image denois-
ng (Kiranyaz, Ince et al., 2020; Wang, Yang, Xie, & Yuan, 2019;
oumpourlis, Doumanoglou, Vretos, & Daras, 2017). While ONNs
rovide a viable alternative, the need of defining a fixed operator
et library in advance and performing an exhaustive search to find
he best operators may render their usage impractical, especially
or large-scale datasets.

. Self-organized operational neural networks

In ONNs, the primary building block is the operational neuron
odel which extends the principles of GOPs to the convolutional

ealm. While retaining the favorable characteristics of sparse-
onnectivity and weight-sharing in a CNN, an ONN provides the
lexibility to incorporate any non-linear transformation within
ocal receptive fields without the overhead of additional trainable
arameters. In this section, we provide a brief overview of the
onvolutional operation in CNN and explain how ONNs generalize
t.

.1. Operational neural networks

In a convolutional neuron, given the output of layer l − 1, the
re-activation output of the kth convolutional neuron in layer l is

calculated as:

xkl (i, j) =

m−1∑
u=0

n−1∑
v=0

wk
l (u, v) yl−1(i − u, j − v) (1)

where yl−1 ∈ RM×N and the weight kernel wk
l ∈ Rm×n. For the

sake of brevity, unit stride and dilation are assumed, and the input
is padded with zeros before the convolution operation in order
to preserve the spatial dimensions. An alternate formulation of
the operation of (1) is now presented. Firstly, y is reshuffled such
that values inside each m × n sliding block of yl−1 is vectorized
and concatenated as rows to form a matrix Yl−1 ∈ RM̂×N̂ where
M̂ = MN and N̂ = mn. This operation is commonly referred to as
‘‘im2col’’ and is critical in conventional GEMM-based convolution
implementations (Chetlur et al., 2014). Secondly, we construct a
matrix W k

l ∈ RM̂×N̂ whose rows are repeated copies of
−→
wk

l =

vec
(
W k

l

)
∈ Rmn, where vec (·) is the vectorization operator. Each

element of W k
l is given by the following equation:

W k
l (i, j) =

−→
wk

l (i) (2)

The convolution operation in (1) can then be represented as
follows:

xkl = vec−1
M×N

⎛⎝∑
j

(
Yl−1 ⊗ W k

l

)⎞⎠ (3)

where ⊗ represents the Hadamard product,
∑

j is the summation
across jth dimension. In (3), vec−1

M×N is the inverse vectorization
peration that reshapes back to M × N . The formulation given
n (3) can now be generically reformulated to represent the
orward-propagation through an operational neuron:
k
l = vec−1

M×N

(
φk
l

(
ψk

l

(
Yl−1,W k

l

)))
(4)

where ψ (·) :RM×N
→ RM×N and φ(·):RM̂×N̂

→ RM̂ are termed
s nodal and pool functions, respectively. Finally, after applying
he activation function f kl , we get the output of the neuron:
k
= f k

(
vec−1 (

φk (ψk (Y ,W k)))) (5)
l l M×N l l l−1 l

203
Given an operator set; a triplet of
(
ψk

l , φ
k
l , f

k
l

)
, an operational

neuron implements the formulation given in (5). It can be noticed
here that the convolutional neuron is a special case of an opera-
tional neuron with nodal function ψ (α, β) = α ∗ β and pooling
function φ(·) =

∑
i ·

.2. Self-organized operational neural networks

The Taylor series expansion of an infinitely differentiable func-
ion f (x) about a point a is given as:

f (x) =

∞∑
n=0

f (n) (a)
n!

(x − a)n (6)

The Q th order truncated approximation, formally known as
he Taylor polynomial, takes the form of the following finite
ummation:

(x)(Q ,a) =

Q∑
n=0

f (n)(a)
n!

(x − a)n (7)

The above formulation can approximate any function f (x)
sufficiently well in the close vicinity of a. With the use of an
activation function that bounds the neuron’s input feature maps
within [a − γ , a + γ ], the formulation of (7) can be exploited
to form a composite nodal operator where the coefficients of the
powers of x are the learned parameters of the network. Following
the same notation as introduced in Section 3.1, the nodal operator
of the kth generative neuron in the lth layer would take the
following general form:

ψk
l

(
Yl−1,W k

l ,Q , a
)

=

Q∑
q=1

Y q
l−1 ⊗ W k(q)

l (8)

where W k
l ∈ RM̂×N̂×Q is the three-dimensional weight matrix

and W k(q)
l ∈ RM̂×N̂ is the qth slice of W k

l . The 0th order term a,
the DC bias, is ignored as its additive effect can be compensated
by the learnable bias parameter of the neuron. Back-propagation
(BP) through this nodal operator is now trivial to accomplish. Eqs.
(9) and (10) provide the derivatives with respect to the input Yl−1
and the qth slice weights, W k(q)

l , respectively:

dψk
l

dYl−1
=

Q∑
q=1

qY q−1
l−1 ⊗ W k(q)

l (9)

dψk
l

dW k(q)
l

= Y q
l−1 (10)

During the learning process, as the weights are updated by
P, this formulation enables the network to spawn novel nodal
ransformations that are optimized to achieve the given learn-
ng objectives. Moreover, the resulting polynomials are functions
hat provide accurate approximation only within the operating
ange [a − γ , a + γ ], which makes them easier to compute as
opposed to functions that generally comprise the operator set
library of an operational neural network (Kiranyaz, Ince et al.,
2020). In addition, the formulation is heterogeneous by design
and enables different nodal transformations for different neurons
in a layer. The heterogeneity offered by such a formulation is
incorporated in all neurons of all the layers, including the output
layer. This provides a crucial advantage over ONNs, where the
output layer operators are always confined a priori to a fixed op-
erator set (Kiranyaz, Ince et al., 2020). Expanding on the intuition
that earlier layers of neural networks are involved with feature
extraction while the latter ones deal with classification, we can
see that self-organizing operational neurons not only can extract
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Fig. 1. An illustration of the 3 × 3 trained kernels of the convolutional versus generative neurons. The linear transformations of the convolutional neuron fail to
estore key image contents, whereas the non-linear transformations posed by the generative neuron enable significantly superior restoration performance.
Fig. 2. Illustration of the formulations of the convolutional, operational, and self-organized (generative) operational neuron.
more discriminative features but can also generate better decision
boundaries, by virtue of the optimized nodal transformations.
Furthermore, as depicted in Fig. 2, the set of Q -weights corre-
sponding to each element of the Kx ×Ky receptive field is unique,
and consequently, corresponds to different transformations. This
provides an unprecedented level of diversity where all the con-
nections between individual elements of the receptive field to the
corresponding weights are governed by different transformation
functions (i.e., the nodal operators for ONNs), as shown in Fig. 1.
204
Such a level of heterogeneity is not possible in the formulation of
ONNs since a single nodal operator is assigned to each neuron and
thus is used by all its connections to the previous layer neurons
with distinct weights (parameters). Therefore, the proposed gen-
erative neuron is not simply another nodal transformation, but
it adds another layer of generalization on top of the operational
neuron idea by enabling the fore-mentioned heterogeneity.

Finally, and most importantly, the property of generating
nodal transformations on-the-fly alleviates the need for prior
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raining runs to search for an appropriate operator set, which
s a practical challenge in the case of ONNs. Therefore, an op-
rational neuron equipped with this nodal operator termed as a
enerative neuron, and the resulting network configuration, the
elf-ONN, provides a plug-and-play replacement for the con-
olution-based models and, therefore, can directly be integrated
nto any contemporary CNN architecture.

.3. Relationship to conventional CNNs

CNNs are indeed a subset of ONNs, corresponding to nodal
nd pool functions of multiplication and summation, respectively.
imilarly, a convolutional neuron is also a special case of a gen-
rative neuron with Q = 1. Moreover, if the pooling operator φ
s fixed to summation the formulation of (8) can be interpreted
s Q independent convolutions. The forward propagation through
he neuron can then be achieved using a single large convolution
peration. This property enables fast implementation of genera-
ive neurons and provides a significant computational edge when
ompared to the operational ones.

. Experiments

.1. Training and network constraints

Convolutional neural networks’ efficacy is related directly to
heir depth. But deeper networks require more data and back-
ropagation iterations to learn efficiently. Therefore, generaliza-
ion performance comparison alone is not sufficient for mea-
uring the true learning ability of a neuronal model because
arge-scale data coupled with increasing model complexity can
otentially mask any shortcomings of the neurons. A more useful
omparison entails limited availability of training resources such
s the number of labeled samples, training iterations, and model
omplexity To accomplish this, we apply the following training
onstraints in our experiments:

(i) Training data is kept scarce. Only 10% (100) patches are
used to train each model, while the remaining 90% (900)
patches, as well as high-resolution noisy images from
BSD12 and BSD68 datasets, are held out for testing. It is
worth noting here that training on such a small portion of
data is quite uncommon for deep CNNs, where the ratio
of training samples to test samples is always greater than
1 (Zhang, Zuo, Chen et al., 2017).

(ii) The number of epochs is limited to 100.
(iii) Model architectures are compact; limited to two hidden

layers.
(iv) Stochastic Gradient Descent (SGD) with momentum-based

optimization is used in BP. Adaptive optimizers such as
Adam (Kingma & Ba, 2015), and RMSProp (Tieleman &
Hinton, 2012), are omitted.

(v) In all noise types, the degree of corruption is severe (SNR
< 0 dB) resulting in the loss of nearly all the contextual
information.

All the networks are trained with a learning rate of 0.01, a
omentum of 0.9, and a mini-batch size of 4, using 10-fold cross-
alidation on the training set. For each experiment, three dif-
erent randomly-initialized training runs are performed and the
est-performing run with respect to the training loss is chosen.

.2. Noise models and datasets

We employ three types of image corruption models; (i) ad-
itive white Gaussian noise (AWGN), (ii) impulse noise, and (iii)
205
speckle noise over 1000 randomly chosen images from the PAS-
CAL dataset (Everingham, Van Gool, Williams, Winn, & Zisserman,
2010). For each noise model, we further employ two different
levels of distortion. All images are converted to grayscale and
resized as 60 × 60 patches. We perform 10-fold cross-validation
and compute the test performance as the average across all folds
of the held-out test set. Specifically, in each fold, the network
is trained on 100 patches and tested on the remaining 900. In
addition, we also evaluate the restoration performance of the
trained model on noisy high-resolution grayscale images from
BSD12, BSD68, Kodak24, and McMaster (Wu, 2011) datasets. In
the case of AWGN, we corrupt each of the images to have −5 dB
and −2 dB SNR levels (defined as the ratio of the image variance
to the mean square error of the noise). This is equivalent to
average σ values of 90 and 60 respectively of the added Gaus-
sian noise. For impulse noise denoising, a fixed-value impulse
noise with a probability of 0.4 and 0.2 is applied; consequently
replacing 40% and 20% of the pixels with either the darkest or
brightest pixel values possible within the data range, respectively.
For speckle noise, we employ the model used in Bioucas-Dias
and Figueiredo (2010) where the noise probability is given by the
Gamma distribution:

p (n) =
M

Γ (M)
e−nMnM−1 (11)

For our experiments, corrupted images corresponding to acute
noise levels of M = 5 and M=10 are used. Fig. 3 provides
examples of some images corrupted with the various kinds and
levels of noises used in this study. For all the problems, we
minimize the mean-squared loss and use the Peak Signal-to-Noise
Ratio (PSNR) as the performance metric:

PSNR
(
xorig , xnoisy

)
= 10 log10

(
MAX2

xorig∑
N

(
xorig − xnoisy

)2
)

(12)

here MAXxorig is the maximum possible peak of xorig in the data
range.

4.3. Network architecture

We use a compact network architecture comprising of 2 hid-
den layers, as depicted in Fig. 4. Moreover, as presented in
Section 3.2, a generative neuron has Q times more network
parameters compared to a convolutional neuron. Therefore, in
order to investigate the exact impact of employing these addi-
tional learnable parameters, we conduct a series of ablation tests.
Specifically, we compare a Self-ONN with the order Q > 1 to the
corresponding CNN with the same number of neurons, as well as
with the CNNs having roughly the same number of network pa-
rameters. This equivalence is reached by increasing the width of
each convolutional layer until the number of network parameters
is similar. The exact number of neurons in each hidden layer is
provided in Table 1.

We propose three Self-ONN configurations; Self-ONN-3, Self-
ONN-5 and Self-ONN-7 corresponding to Q ∈ [3, 5, 7], respec-
tively. A higher value of Q enables greater non-linearity, but at the
expense of more trainable parameters. Therefore we experiment
with different Q values in order to empirically analyze this trade-
off for the denoising problem. The number of generative neurons
in the first and 2nd hidden layers is set to 6 and 10, respectively.
The corresponding CNNs with the same number of parameters
are termed CNN-3, CNN-5, and CNN-7, while the CNN having the
same number of neurons as the Self-ONN is referred to as CNN-1
in the study.

For Self-ONNs, with the use of tanh as activation, the value
of a is naturally set to 0 in (8). Additionally, we restrict the

choice of pooling function φ to summation. Table 1 provides the
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Fig. 3. Examples of target patches and their corrupted counterparts for each type of noise.
Table 1
Architectural details for the different networks.
Network Neurons in Layer 1 Neurons in Layer 2 Total neurons Parameters (k) Kernel sizes

Self-ONN-7 6 10 16 26.3 11,7,3
Self-ONN-5 6 10 16 18.8 11,7,3
Self-ONN-3 6 10 16 11.3 11,7,3
CNN-1 6 10 16 3.7 11,7,3
CNN-3 11 18 29 11.2 11,7,3
CNN-5 14 24 38 18.4 11,7,3
CNN-7 18 27 45 26.3 11,7,3
DnCNN (Zhang, Zuo, Chen et al., 2017) – – 1024 500 3
Fig. 4. The network architecture employed in this study.

rchitectural details of each network. We also compare each Self-
NN to an equivalent ONN for AWGN. Moreover, a comparison
ith a deep CNN, albeit unfair, is also provided. We use the
7-layer architecture proposed in Zhang, Zuo, Chen et al. (2017)
hich has 64 neurons in each layer.

. Results and discussion

Table 2 shows the restoration performance in terms of PSNR
ver the patches in the test set of Pascal, and over the high-
esolution images from BSD12, BSD68, Kodak, and McMaster
206
datasets for all the three restoration problems. Fig. 5 depicts
the training curves for the three problems and all the networks
included in this study, while Fig. 8 provides visual examples of
the denoising performance of various networks.

5.1. Self-ONNs versus equivalent CNNs

We first aim to investigate the performance of generative
neurons and convolutional neurons when treated as standalone
learning units. To accomplish this, we compare Self-ONNs against
CNN with the same number of neurons (CNN-1) for all prob-
lems and datasets. We observe from Table 2 that Self-ONNs
consistently achieve on average, 1.03 dB, 3.68 dB, and 1.06 dB
PSNR improvement in the generalization performances across
the different levels of AWGN, impulse, and speckle noise mod-
els respectively. The performance gap is exceptionally high for
the case of impulse noise across all three datasets. Moreover,
even for the case of AWGN where the convolutional neurons
are expected to fare better, we observe a clear gap in both
training and generalization performances consistently across the
three datasets. Furthermore, the performance gain with gen-
erative neurons seems to be correlated with the order, Q , as
higher order Self-ONN (e.g., Self-ONN-7 and Self-ONN-5) achieves
better performance when compared to the lower order variant
(e.g., Self-ONN-3).

Fig. 6 shows the comparison of the generalization performance
across all datasets and problems, between each Self-ONN con-
figuration and its equivalent CNN, having the same number of
network parameters. We can observe a clear trend where even
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Table 2
PSNR performances for all models across the three noise types over the test sets.
Noise Params Dataset Self-ONN CNN Deep CNN

Self-ONN-7 Self-ONN-5 Self-ONN-3 CNN CNN-3 CNN-5 CNN-7 DnCNN

AWGN

σ = 90

Set12 21.29 21.14 21.14 20.76 20.87 20.88 20.85 17.80
Set68 20.39 20.22 20.19 19.20 19.25 19.28 19.30 17.48
Pascal 19.47 19.41 19.37 18.74 18.80 18.81 18.80 16.75
Kodak 22.39 22.23 22.08 21.02 21.17 21.20 21.22 18.67
McM 21.71 21.87 21.77 20.23 20.26 20.19 20.14 17.90

σ = 60

Set12 22.37 22.36 22.38 21.83 21.97 21.95 21.93 19.84
Set68 21.80 21.73 21.64 20.31 20.43 20.40 20.40 19.46
Pascal 20.56 20.54 20.53 19.77 19.85 19.86 19.86 18.55
Kodak 23.17 23.16 23.09 22.11 22.33 22.28 22.29 20.59
McM 22.73 22.88 22.96 21.26 21.11 21.19 21.18 20.26

IMPULSE

40%

Set12 23.35 23.34 23.30 20.39 20.45 20.52 20.46 19.15
Set68 22.30 22.36 22.22 19.42 19.47 19.50 19.47 18.61
Pascal 21.50 21.53 21.47 18.45 18.52 18.53 18.52 17.82
Kodak 25.03 24.91 24.87 20.66 20.77 20.80 20.76 19.58
McM 25.20 25.01 25.17 20.22 20.44 20.37 20.33 19.64

20%

Set12 24.73 24.84 24.66 21.87 22.08 21.98 22.01 22.78
Set68 24.05 24.11 23.88 20.70 20.83 20.81 20.78 22.04
Pascal 23.11 23.17 22.92 19.88 19.98 19.98 19.98 21.03
Kodak 26.45 26.61 26.05 21.89 22.11 22.05 22.06 24.13
McM 26.29 26.58 26.16 21.43 21.60 21.60 21.60 23.63

SPECKLE

M=5

Set12 19.18 18.91 18.86 17.92 18.02 17.68 17.94 17.80
Set68 18.72 18.54 18.56 17.86 17.91 17.69 17.89 17.64
Pascal 19.20 19.18 19.21 18.76 18.75 18.71 18.75 17.97
Kodak 18.76 18.54 18.37 17.12 17.16 16.92 17.14 17.16
McM 21.34 21.11 21.08 19.08 19.02 18.79 19.05 19.50

M=10

Set12 20.32 20.25 20.10 19.75 19.65 19.65 19.69 19.12
Set68 19.30 19.21 19.16 18.54 18.52 18.57 18.65 18.45
Pascal 20.51 20.52 20.49 19.81 19.84 19.84 19.87 19.22
Kodak 19.59 19.42 19.32 18.30 18.20 18.30 18.42 18.40
McM 22.06 22.10 21.93 20.18 20.18 20.14 20.22 20.70
Fig. 5. PSNR curves versus BP epochs for images restored from different noise models of all the networks. The peak value is provided inside the parenthesis.
207
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Table 3
Self-ONN and ONN PSNR performances on the restoration of images corrupted
with AWGN of σ = 90.

BSD12 BSD68 Pascal Kodak McMaster

Self-ONN-7 21.29 20.39 19.47 22.39 21.71
Self-ONN-5 21.14 20.22 19.41 22.23 21.87
Self-ONN-3 21.14 20.19 19.37 22.08 21.77
ONN 20.91 19.92 18.85 20.97 20.48

a lower order Self-ONN such as the one with Q = 3, significantly
utperforms its convolutional counterpart (more than 1 dB PSNR
mprovement). This validates our claim that adding more parame-
ers in the form of wider convolutional layers with more neurons
s sub-optimal. In other words, instead of simply increasing the
umber of neurons, the generative neurons of Self-ONNs with
ptimized non-linear nodal operators achieve better diversity and
hus have a higher impact on the restoration performance.

.2. Self-ONNs versus equivalent ONNs

In order to gauge the performance of Self-ONNs against equiv-
lent size ONNs, we configured an ONN with the same network
rchitecture as in Fig. 4 using the operator combinations provided
n Kiranyaz, Ince et al. (2020) for AWGN noise with σ set to 90.
able 3 provides the comparison over the test set of the resulting
SNR for Self-ONNs and ONNs across the three datasets.
All Self-ONN variants outperform the ONN on this task across

ll three datasets. These results suggest that the nodal operators
elected within the operator set library of ONNs, although better
han the sole convolution operator of CNNs, may still not be op-
imal and the synthesized nodal operators in Self-ONNs provide
much better alternative.

.3. Self-ONNs versus deep CNNs

We can see from Fig. 5 that the deep 17-layer CNN performs
ell on the training set and consistently outperforms the compact
-layer CNNs across all noise categories. On speckle noise with
=5 and M=10, it achieves 21.17 dB and 21.34 dB respectively
n the training set which is the top among all competing ar-
hitectures, even surpassing the Self-ONN variants. However, as
s evident from the test set performance shown in Table 2, the
odel severely overfits the training data and fails to general-

ze well. In the case of AWGN and impulse noise, the test set
erformance of the deep model is even worse than the shallow
NNs, while on speckle noise it is barely at par with them.
his is an important observation that validates the notion that
eeper models unless coupled with ample training resources, do
ot guarantee better generalization capability. Despite learning
ell, the larger number of parameters in the deep model only
esulted in easier overfitting of the training data and did not

rovide adequate generalization. While shallow CNNs do not

208
suffer from overfitting as much as the deeper model, the Self-ONN
variants, using the same number of trainable parameters, provide
considerably better generalization performance.

5.4. Parameter–performance relationship curve

In Fig. 7, a plot of the number of trainable parameters and
the corresponding generalization performance is shown for all
networks used in this study for each of the three noise types.
The Self-ONN networks, powered by the proposed generative
neurons, consistently provide a better tradeoff between the num-
ber of parameters and the denoising performance as compared
to the convolutional networks. Each of the Self-ONN variants
outperforms the corresponding CNN with an equal number of
parameters. This is a testament to the superior learning capa-
bility of the generative neurons. Moreover, as discussed earlier
in Section 5.3, the 17-layer deep CNN (DnCNN) fairs the worst
across all three noise types, despite having at least 19 times more
trainable parameters than the competing networks. This can be
attributed to the fact that enhanced generalization capacity can-
not be realized by deeper models in the absence of more training
resources.

5.5. Computational complexity analysis

5.5.1. Theoretical operations
Table 4 provides a comparison of the total number of multiply-

accumulate (MAC) operations for the networks considered in this
study. One MAC corresponds to a single multiply and addition
operation, making it roughly equivalent to 2 FLOPS. The number
of MACs for the lth layer of the network is calculated using the
ollowing formula:

ACs (l) = |Yl| ∗
(
(Nl−1 ∗ K l

x ∗ K l
y ∗ Q l) + 1

)
where |Yl| is the number of elements in the output of the current
layer, Nl−1 is the number of neurons in the previous layer, K l

x and
K l
y are the kernel dimensions for the current layer, Q l is the order

of approximation. The last term can be omitted for the special
case where the bias is not used. Besides, for each network, we
also calculate the ratio of MACs and the average generalization
performance in terms of PSNR. This provides a quantification of
the utility of trainable parameters in each network architecture.

As expected, we see that Self-ONNs have approximately the
same number of MACs as compared to their equivalent CNNs.
However, the highest order Self-ONN, Self-ONN-7, requires 4.65G
MACs per dB of test PSNR, whereas the next lower order config-
uration, Self-ONN-5, only consumes 1.99G flops per dB of gen-
eralization performance. Two key insights can be gained from
this observation. Firstly, the difference implies that there exists
a certain optimal value of Q for a given problem for Self-ONNs,
above which the generalization performance saturates for this
particular problem. Secondly, there might exist a sparsity in the

higher-order weights, which can be exploited during inference to
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Fig. 7. Test set performance (averaged across all datasets) versus the number of parameters of the networks used in this study. Networks with generative neurons
(Self-ONNs) are represented by triangles while the ones with convolutional neurons (CNNs) are represented by circles.
Table 4
The computational complexity of each network in terms of multiply-accumulate
(MAC) operations.

MACs (G) MACs per dB (G/dB)

Self-ONN-7 94.71 4.655
Self-ONN-5 67.66 1.998
Self-ONN-3 40.62 3.27
CNN-3 40.41 4.961
CNN-5 66.28 2.138
CNN-7 94.61 3.562

Table 5
Running time comparison.
Network 256 × 256 512 × 512 1024 × 1024

Self-ONN-7 0.13 0.48 1.93
Self-ONN-5 0.09 0.36 1.43
Self-ONN-3 0.05 0.22 0.88
CNN-7 0.06 0.21 0.84
CNN-5 0.04 0.18 0.71
CNN-3 0.03 0.15 0.58
ONN 0.91 3.81 10.11
DnCNN 0.41 1.65 6.70

speed up performance using only a subset of the Q -dimensional
eights, at the expense of negligible loss of performance. Both
f these observations will be investigated further in our future
tudies.

.5.2. Execution time
Table 5 presents the inference time comparison for all the

odels used in this study with different image sizes. The bench-
arking was performed on an NVIDIA GTX 1060 GPU with CUDA
ersion 10.1 running on a 7th-generation i7 Intel processor.
he ONN and Self-ONN networks were implemented using Fas-
ONN (Malik, Kiranyaz, & Gabbouj, 2020) library which utilizes
yTorch (Paszke et al., 2019).
From Table 5, we notice that the execution time for the Self-

NN is considerably lower than the one for the vanilla ONNs. As
iscussed in Section 3.3, this is because of the fact that Self-ONNs
an be expressed in terms of convolutions, which lends them
o faster computation on GPUs. Moreover, on average, a Self-
NN with equivalent parameters is 0.04, 0.17, and 0.7 s slower
or images of sizes 256 × 256,512 × 512 and 1024 × 1024
respectively, as compared to a CNN. While such differences are
practically negligible if the gain in generalization performance is
considered, it is nevertheless worth noting that the Self-ONN GPU
implementation is not yet optimized. Specifically, the Hadamard
exponentiation operation of (8) and the subsequent convolution
209
operations are carried out by different CUDA kernels. This adds
the overhead of launching kernels as-well-as copying data to-
and-from the GPU. Fusing the two kernels would enable efficient
exploitation of the fact that the number of independent opera-
tions in a convolutional neuron and generative neurons will be
the same, and would result in a significantly reduced inference
time. This will be a part of our focus for future extensions.

6. Conclusions

In this study, we propose Self-ONNs to tackle severe image
restoration problems. Self-ONNs are composed of generative neu-
rons, which have the ability to synthesize any nodal operator
by leveraging Taylor polynomials. Our results provide conclusive
evidence that these optimized nodal transformations achieved,
through generative neurons, considerably higher learning and
generalization performance when compared with the linear map-
pings of convolutional neurons. Moreover, we show that adding
learnable parameters by increasing the number of convolutional
filters is sub-optimal while doing so in a manner such that the
added parameters can more directly influence the degree of non-
linearity is a more worthy investment. The insufficient enrich-
ment of the solution space when adding convolutional filters is
one of the key reasons why state-of-the-art CNN architectures
for image restoration are generally very deep. Finally, we show
that the proposed Self-ONNs can even outperform its predecessor,
ONNs, suggesting that for challenging inverse imaging problems
such as the ones tackled in this study, hand-crafting an operator
set library is not practical as the required nodal transformation
may not exist in the form of well-known functions.

The core idea of generative neurons provides a modular inter-
face and as such, it can be incorporated directly into the prevalent
denoising and restoration architectures to increase their per-
formance, as well as decrease the network size. Moreover, the
networks used in this study were compact and used basic train-
ing paradigms such as SGD-based optimization. It will be an
interesting research direction to explore various contemporary
techniques for Self-ONNs essentially used for stabilizing the train-
ing of CNNs, such as batch normalization, Adam optimization
with its variants, and dropout. These will be the subjects of our
future research direction.
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