261 research outputs found

    Upstream traffic capacity of a WDM EPON under online GATE-driven scheduling

    Full text link
    Passive optical networks are increasingly used for access to the Internet and it is important to understand the performance of future long-reach, multi-channel variants. In this paper we discuss requirements on the dynamic bandwidth allocation (DBA) algorithm used to manage the upstream resource in a WDM EPON and propose a simple novel DBA algorithm that is considerably more efficient than classical approaches. We demonstrate that the algorithm emulates a multi-server polling system and derive capacity formulas that are valid for general traffic processes. We evaluate delay performance by simulation demonstrating the superiority of the proposed scheduler. The proposed scheduler offers considerable flexibility and is particularly efficient in long-reach access networks where propagation times are high

    Optical label-controlled transparent metro-access network interface

    Get PDF

    All Optical Signal Processing Technologies in Optical Fiber Communication

    Get PDF
    Due to continued growth of internet at starling rate and the introduction of new broadband services, such as cloud computing, IPTV and high-definition media streaming, there is a requirement for flexible bandwidth infrastructure that supports mobility of data at peta-scale. Elastic networking based on gridless spectrum technology is evolving as a favorable solution for the flexible optical networking supportive next generation traffic requirements. Recently, research is centered on a more elastic spectrum provision methodology than the traditional ITU-T grid. The main issue is the requirement for a transmission connect, capable of accommodating and handling a variety of signals with distinct modulation format, baud rate and spectral occupancy. Segmented use of the spectrum could lead to the shortage of availableness of sufficiently extensive spectrum spaces for high bitrate channels, resulting in wavelength contention. On-demand space assignment creates not only deviation from the ideal course but also have spectrum fragmentation, which reduces spectrum resource utilization. This chapter reviewed the recent research development of feasible solutions for the efficient transport of heterogeneous traffic by enhancing the flexibility of the optical layer for performing allocation of network resources as well as implementation of optical node by all optical signal processing in optical fiber communication

    Optical fibre local area networks

    Get PDF

    Integrated voice/data through a digital PBX

    Get PDF
    The digital voice/data PBX is finally reaching its anticipated potential and becoming a major factor when considering the total communications picture for many businesses today. The digital PBX has always been the choice for voice communications but has lagged behind the LAN industry when it comes to data transfers. The pendulum has begun to swing with the enhanced data capabilities of third and fourth generation PBXs. The battle for the total communication market is quite fierce between the LAN and PBX vendors now. This research thesis looks at the history, evolution, and architecture of voice/data PBXs. It traces development of PBXs through the present fourth generation architectures. From the first manual switches introduced in the late 1800\u27s through the Strowger switch, step-by-step switching, stored program control, common control, digital switches, dual bus architectures, and finally what is anticipated in the future. A detailed description of the new fourth generation dual bus architectures is presented. Lastly, speculations on the future direction PBX architectures will take is explored. A description of the mechanics of a possible Wave Division PBX is presented based on a fiber optic transport system

    Energy Efficient Big Data Networks

    Get PDF
    The continuous increase of big data applications in number and types creates new challenges that should be tackled by the green ICT community. Data scientists classify big data into four main categories (4Vs): Volume (with direct implications on power needs), Velocity (with impact on delay requirements), Variety (with varying CPU requirements and reduction ratios after processing) and Veracity (with cleansing and backup constraints). Each V poses many challenges that confront the energy efficiency of the underlying networks carrying big data traffic. In this work, we investigated the impact of the big data 4Vs on energy efficient bypass IP over WDM networks. The investigation is carried out by developing Mixed Integer Linear Programming (MILP) models that encapsulate the distinctive features of each V. In our analyses, the big data network is greened by progressively processing big data raw traffic at strategic locations, dubbed as processing nodes (PNs), built in the network along the path from big data sources to the data centres. At each PN, raw data is processed and lower rate useful information is extracted progressively, eventually reducing the network power consumption. For each V, we conducted an in-depth analysis and evaluated the network power saving that can be achieved by the energy efficient big data network compared to the classical approach. Along the volume dimension of big data, the work dealt with optimally handling and processing an enormous amount of big data Chunks and extracting the corresponding knowledge carried by those Chunks, transmitting knowledge instead of data, thus reducing the data volume and saving power. Variety means that there are different types of big data such as CPU intensive, memory intensive, Input/output (IO) intensive, CPU-Memory intensive, CPU/IO intensive, and memory-IO intensive applications. Each type requires a different amount of processing, memory, storage, and networking resources. The processing of different varieties of big data was optimised with the goal of minimising power consumption. In the velocity dimension, we classified the processing velocity of big data into two modes: expedited-data processing mode and relaxed-data processing mode. Expedited-data demanded higher amount of computational resources to reduce the execution time compared to the relaxed-data. The big data processing and transmission were optimised given the velocity dimension to reduce power consumption. Veracity specifies trustworthiness, data protection, data backup, and data cleansing constraints. We considered the implementation of data cleansing and backup operations prior to big data processing so that big data is cleansed and readied for entering big data analytics stage. The analysis was carried out through dedicated scenarios considering the influence of each V’s characteristic parameters. For the set of network parameters we considered, our results for network energy efficiency under the impact of volume, variety, velocity and veracity scenarios revealed that up to 52%, 47%, 60%, 58%, network power savings can be achieved by the energy efficient big data networks approach compared to the classical approach, respectively

    Traffic engineering in dynamic optical networks

    Get PDF
    Traffic Engineering (TE) refers to all the techniques a Service Provider employs to improve the efficiency and reliability of network operations. In IP over Optical (IPO) networks, traffic coming from upper layers is carried over the logical topology defined by the set of established lightpaths. Within this framework then, TE techniques allow to optimize the configuration of optical resources with respect to an highly dynamic traffic demand. TE can be performed with two main methods: if the demand is known only in terms of an aggregated traffic matrix, the problem of automatically updating the configuration of an optical network to accommodate traffic changes is called Virtual Topology Reconfiguration (VTR). If instead the traffic demand is known in terms of data-level connection requests with sub-wavelength granularity, arriving dynamically from some source node to any destination node, the problem is called Dynamic Traffic Grooming (DTG). In this dissertation new VTR algorithms for load balancing in optical networks based on Local Search (LS) techniques are presented. The main advantage of using LS is the minimization of network disruption, since the reconfiguration involves only a small part of the network. A comparison between the proposed schemes and the optimal solutions found via an ILP solver shows calculation time savings for comparable results of network congestion. A similar load balancing technique has been applied to alleviate congestion in an MPLS network, based on the efficient rerouting of Label-Switched Paths (LSP) from the most congested links to allow a better usage of network resources. Many algorithms have been developed to deal with DTG in IPO networks, where most of the attention is focused on optimizing the physical resources utilization by considering specific constraints on the optical node architecture, while very few attention has been put so far on the Quality of Service (QoS) guarantees for the carried traffic. In this thesis a novel Traffic Engineering scheme is proposed to guarantee QoS from both the viewpoint of service differentiation and transmission quality. Another contribution in this thesis is a formal framework for the definition of dynamic grooming policies in IPO networks. The framework is then specialized for an overlay architecture, where the control plane of the IP and optical level are separated, and no information is shared between the two. A family of grooming policies based on constraints on the number of hops and on the bandwidth sharing degree at the IP level is defined, and its performance analyzed in both regular and irregular topologies. While most of the literature on DTG problem implicitly considers the grooming of low-speed connections onto optical channels using a TDM approach, the proposed grooming policies are evaluated here by considering a realistic traffic model which consider a Dynamic Statistical Multiplexing (DSM) approach, i.e. a single wavelength channel is shared between multiple IP elastic traffic flows
    • …
    corecore