19 research outputs found

    Trajectory Deflection of Spinning Magnetic Microparticles, the Magnus Effect at the Microscale

    Get PDF
    The deflection due to the Magnus force of magnetic particles with a diameter of 80 micrometer dropping through fluids and rotating in a magnetic field was measured. With Reynolds number for this experiment around 1, we found trajectory deflections of the order of 1 degree, in agreement within measurement error with theory. This method holds promise for the sorting and analysis of the distribution in magnetic moment and particle diameter of suspensions of microparticles, such as applied in catalysis, or objects loaded with magnetic particles.Comment: 12 pages, 3 figures. Appendix with 6 figure

    Limitation of spiral microchannels for particle separation in heterogeneous mixtures: impact of particles’ size and deformability

    Get PDF
    Spiral microchannels have shown promising results for separation applications. Hydrodynamic particle-particle interactions are a known factor strongly influencing focussing behaviours in inertial devices, with recent work highlighting how the performance of bidisperse mixtures is altered when compared with pure components, in square channels. This phenomenon has not been previously investigated in detail for spiral channels. Here, we demonstrate that, in spiral channels, both the proportion and deformability of larger particles (13 μm diameter) impact upon the recovery (up to 47% decrease) of small rigid particles (4 μm). The effect, observed at low concentrations (volume fraction <0.0012), is attributed to the hydrodynamic capture of beads by larger cells. These changes in particles focussing behaviour directly impede the efficiency of the separation – diverting beads from locations expected from measurements with pure populations to co-collection with larger cells – and could hamper deployment of the technology for certain applications. Similar focussing behaviour alterations were noted when working with purification of stem cell end products

    Establishment of a Perfusion Process with Antibody-Producing CHO Cells Using a 3D-Printed Microfluidic Spiral Separator with Web-Based Flow Control

    Get PDF
    Monoclonal antibodies are increasingly dominating the market for human therapeutic and diagnostic agents. For this reason, continuous methods—such as perfusion processes—are being explored and optimized in an ongoing effort to increase product yields. Unfortunately, many established cell retention devices—such as tangential flow filtration—rely on membranes that are prone to clogging, fouling, and undesirable product retention at high cell densities. To circumvent these problems, in this work, we have developed a 3D-printed microfluidic spiral separator for cell retention, which can readily be adapted and replaced according to process conditions (i.e., a plug-and-play system) due to the fast and flexible 3D printing technique. In addition, this system was also expanded to include automatic flushing, web-based control, and notification via a cellphone application. This set-up constitutes a proof of concept that was successful at inducing a stable process operation at a viable cell concentration of 10–17 × 106 cells/mL in a hybrid mode (with alternating cell retention and cell bleed phases) while significantly reducing both shear stress and channel blockage. In addition to increasing efficiency to nearly 100%, this microfluidic device also improved production conditions by successfully separating dead cells and cell debris and increasing cell viability within the bioreactor

    Deformability-induced lift force in spiral microchannels for cell separation

    Get PDF
    Cell sorting and isolation from a heterogeneous mixture is a crucial task in many aspects of cell biology, biotechnology and medicine. Recently, there has been an interest in methods allowing cell separation upon their intrinsic properties such as cell size and deformability, without the need for use of biochemical labels. Inertial focusing in spiral microchannels has been recognised as an attractive approach for high-throughput cell sorting for myriad point of care and clinical diagnostics. Particles of different sizes interact to a different degree with the fluid flow pattern generated within the spiral microchannel and that leads to particles ordering and separation based on size. However, the deformable nature of cells adds complexity to their ordering within the spiral channels. Herein, an additional force, deformability-induced lift force (FD), involved in the cell focusing mechanism within spiral microchannels has been identified, investigated and reported for the first time, using a cellular deformability model (where the deformability of cells is gradually altered using chemical treatments). Using this model, we demonstrated that spiral microchannels are capable of separating cells of the same size but different deformability properties, extending the capability of the previous method. We have developed a unique label-free approach for deformability-based purification through coupling the effect of FD with inertial focusing in spiral microchannels. This microfluidic-based purification strategy, free of the modifying immuno-labels, allowing cell processing at a large scale (millions of cells per min and mls of medium per minute), up to high purities and separation efficiency and without compromising cell quality

    3D Printing of Inertial Microfluidic Devices.

    Full text link
    Inertial microfluidics has been broadly investigated, resulting in the development of various applications, mainly for particle or cell separation. Lateral migrations of these particles within a microchannel strictly depend on the channel design and its cross-section. Nonetheless, the fabrication of these microchannels is a continuous challenging issue for the microfluidic community, where the most studied channel cross-sections are limited to only rectangular and more recently trapezoidal microchannels. As a result, a huge amount of potential remains intact for other geometries with cross-sections difficult to fabricate with standard microfabrication techniques. In this study, by leveraging on benefits of additive manufacturing, we have proposed a new method for the fabrication of inertial microfluidic devices. In our proposed workflow, parts are first printed via a high-resolution DLP/SLA 3D printer and then bonded to a transparent PMMA sheet using a double-coated pressure-sensitive adhesive tape. Using this method, we have fabricated and tested a plethora of existing inertial microfluidic devices, whether in a single or multiplexed manner, such as straight, spiral, serpentine, curvilinear, and contraction-expansion arrays. Our characterizations using both particles and cells revealed that the produced chips could withstand a pressure up to 150 psi with minimum interference of the tape to the total functionality of the device and viability of cells. As a showcase of the versatility of our method, we have proposed a new spiral microchannel with right-angled triangular cross-section which is technically impossible to fabricate using the standard lithography. We are of the opinion that the method proposed in this study will open the door for more complex geometries with the bespoke passive internal flow. Furthermore, the proposed fabrication workflow can be adopted at the production level, enabling large-scale manufacturing of inertial microfluidic devices

    High-Throughput Particle Concentration Using Complex Cross-Section Microchannels.

    Full text link
    High throughput particle/cell concentration is crucial for a wide variety of biomedical, clinical, and environmental applications. In this work, we have proposed a passive spiral microfluidic concentrator with a complex cross-sectional shape, i.e., a combination of rectangle and trapezoid, for high separation efficiency and a confinement ratio less than 0.07. Particle focusing in our microfluidic system was observed in a single, tight focusing line, in which higher particle concentration is possible, as compared with simple rectangular or trapezoidal cross-sections with similar flow area. The sharper focusing stems from the confinement of Dean vortices in the trapezoidal region of the complex cross-section. To quantify this effect, we introduce a new parameter, complex focusing number or CFN, which is indicative of the enhancement of inertial focusing of particles in these channels. Three spiral microchannels with various widths of 400 µm, 500 µm, and 600 µm, with the corresponding CFNs of 4.3, 4.5, and 6, respectively, were used. The device with the total width of 600 µm was shown to have a separation efficiency of ~98%, and by recirculating, the output concentration of the sample was 500 times higher than the initial input. Finally, the investigation of results showed that the magnitude of CFN relies entirely on the microchannel geometry, and it is independent of the overall width of the channel cross-section. We envision that this concept of particle focusing through complex cross-sections will prove useful in paving the way towards more efficient inertial microfluidic devices

    Applying model approaches in non-model systems: A review and case study on coral cell culture

    Get PDF
    Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales

    Computational inertial microfluidics:a review

    Get PDF
    Since the discovery of inertial focusing in 1961, numerous theories have been put forward to explain the migration of particles in inertial flows, but a complete understanding is still lacking. Recently, computational approaches have been utilized to obtain better insights into the underlying physics. In particular, fundamental aspects of particle focusing inside straight and curved microchannels have been explored in detail to determine the dependence of focusing behavior on particle size, channel shape, and flow Reynolds number. In this review, we differentiate between the models developed for inertial particle motion on the basis of whether they are semi-analytical, Navier-Stokes-based, or built on the lattice Boltzmann method. This review provides a blueprint for the consideration of numerical solutions for modeling of inertial particle motion, whether deformable or rigid, spherical or non-spherical, and whether suspended in Newtonian or non-Newtonian fluids. In each section, we provide the general equations used to solve particle motion, followed by a tutorial appendix and specified sections to engage the reader with details of the numerical studies. Finally, we address the challenges ahead in the modeling of inertial particle microfluidics for future investigators

    Fabrication of clog-free microfluidic cell isolation and solid-state light-emitting devices for biomedical applications

    Get PDF
    Over the past few decades, research and development on microfluidic devices, also referred to as lab-on-a-chip systems or microfluidic total analysis systems (TAS), have advanced quickly. There aren't many commercial success stories for microfluidic devices, despite the many advantages they offer, including improved analytical performance, decreased sample and reagent usage in the biomedical disciplines. From liquid biopsies, microfluidics has been used to filter out rare tumor cells from blood. Low flow rates and device clogs brought on by a single fluidic path function severely restrict processing. A novel technique was created employing multifunctional hybrid microposts with various features has effectively ensured high effective separation of rare cells from biological fluids. Furthermore, Solid-State perovskite material is synthesized, fabricated in 3D printed layers, and characterized for the need to be incorporated into fluorescence imaging of biological cells. Since effective imaging techniques are required to image the cells in a PDMS-based microfluidic device, the emission of the perovskite material shows positive signs as a fluorescent light source for identification of cells based on their emission of light.Includes bibliographical references

    Permanent magnet systems for microfluidic applications

    Get PDF
    corecore