74 research outputs found

    Theorem of three circles in Coq

    Full text link
    The theorem of three circles in real algebraic geometry guarantees the termination and correctness of an algorithm of isolating real roots of a univariate polynomial. The main idea of its proof is to consider polynomials whose roots belong to a certain area of the complex plane delimited by straight lines. After applying a transformation involving inversion this area is mapped to an area delimited by circles. We provide a formalisation of this rather geometric proof in Ssreflect, an extension of the proof assistant Coq, providing versatile algebraic tools. They allow us to formalise the proof from an algebraic point of view.Comment: 27 pages, 5 figure

    05021 Abstracts Collection -- Mathematics, Algorithms, Proofs

    Get PDF
    From 09.01.05 to 14.01.05, the Dagstuhl Seminar 05021 ``Mathematics, Algorithms, Proofs\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. LinkstFo extended abstracts or full papers are provided, if available

    Affine functions and series with co-inductive real numbers

    Get PDF
    We extend the work of A. Ciaffaglione and P. Di Gianantonio on mechanical verification of algorithms for exact computation on real numbers, using infinite streams of digits implemented as co-inductive types. Four aspects are studied: the first aspect concerns the proof that digit streams can be related to the axiomatized real numbers that are already axiomatized in the proof system (axiomatized, but with no fixed representation). The second aspect re-visits the definition of an addition function, looking at techniques to let the proof search mechanism perform the effective construction of an algorithm that is correct by construction. The third aspect concerns the definition of a function to compute affine formulas with positive rational coefficients. This should be understood as a testbed to describe a technique to combine co-recursion and recursion to obtain a model for an algorithm that appears at first sight to be outside the expressive power allowed by the proof system. The fourth aspect concerns the definition of a function to compute series, with an application on the series that is used to compute Euler's number e. All these experiments should be reproducible in any proof system that supports co-inductive types, co-recursion and general forms of terminating recursion, but we performed with the Coq system [12, 3, 14]

    PolyARBerNN: A Neural Network Guided Solver and Optimizer for Bounded Polynomial Inequalities

    Full text link
    Constraints solvers play a significant role in the analysis, synthesis, and formal verification of complex embedded and cyber-physical systems. In this paper, we study the problem of designing a scalable constraints solver for an important class of constraints named polynomial constraint inequalities (also known as non-linear real arithmetic theory). In this paper, we introduce a solver named PolyARBerNN that uses convex polynomials as abstractions for highly nonlinear polynomials. Such abstractions were previously shown to be powerful to prune the search space and restrict the usage of sound and complete solvers to small search spaces. Compared with the previous efforts on using convex abstractions, PolyARBerNN provides three main contributions namely (i) a neural network guided abstraction refinement procedure that helps selecting the right abstraction out of a set of pre-defined abstractions, (ii) a Bernstein polynomial-based search space pruning mechanism that can be used to compute tight estimates of the polynomial maximum and minimum values which can be used as an additional abstraction of the polynomials, and (iii) an optimizer that transforms polynomial objective functions into polynomial constraints (on the gradient of the objective function) whose solutions are guaranteed to be close to the global optima. These enhancements together allowed the PolyARBerNN solver to solve complex instances and scales more favorably compared to the state-of-art non-linear real arithmetic solvers while maintaining the soundness and completeness of the resulting solver. In particular, our test benches show that PolyARBerNN achieved 100X speedup compared with Z3 8.9, Yices 2.6, and NASALib (a solver that uses Bernstein expansion to solve multivariate polynomial constraints) on a variety of standard test benches

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Proving formally the implementation of an efficient gcd algorithm for polynomials

    Get PDF
    Last version published in the proceedings of IJCAR 06, part of FLOC 06.International audienceWe describe here a formal proof in the Coq system of the structure theorem for subresultants, which allows to prove formally the correction of our implementation of the subresultant algorithm. Up to our knowledge, it is the first mechanized proof of this result
    corecore