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Abstract We present a proof procedure for univariate real polynomial problems in
Isabelle/HOL. The core mathematics of our procedure is based on univariate cylindrical
algebraic decomposition. We follow the approach of untrusted certificates, separating solv-
ing from verifying: efficient external tools perform expensive real algebraic computations,
producing evidence that is formally checked within Isabelle’s logic. This allows us to exploit
highly-tuned computer algebra systems like Mathematica to guide our procedure without
impacting the correctness of its results. We present experiments demonstrating the efficacy
of this approach, in many cases yielding orders of magnitude improvements over previous
methods.

Keywords Interactive theorem proving · Isabelle/HOL · Decision procedure · Cylindrical
algebraic decomposition

1 Introduction

Nonlinear polynomial systems are ubiquitous in science and engineering. As real-world
applications of formal verification continue to grow and diversify, there is an increasing
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need for proof assistants (e.g., ACL2, Coq, Isabelle [27], HOL Light and PVS) to provide
automation for reasoning about nonlinear systems over the reals [17,24,25].

Cylindrical algebraic decomposition (CAD) [8] is one of the most powerful known
techniques for analysing non-linear polynomial systems. CAD-based methods have been
implemented in various systems such as Z3 [9], QEPCAD [3], Mathematica and Maple.
However, implementing CAD-based decision procedures within proof assistants has been
hindered by the difficulty in formalising the mathematics justifying CAD computations.

In this paper, we present a formally verified procedure1 based on CAD for univariate
polynomial problems with rational coefficients. Goals such as

∀x .
(

x2 > 2 ∧ x10 − 2x5 + 1 ≥ 0
)

∨ x < 2

∃x .
(
x2 = 2 ∧ (x > 1 ∨ x < 0)

)

can be discharged by our tactic automatically. It should be noted that certifying a general
multivariate CAD procedure is much harder, and the univariate version we describe in the
paper is only a first step in that direction.

A key feature of our procedure is its certificate-based design inwhich an external untrusted
(but ideally highly efficient) program is used to find certificates, and those certificates are then
checked by verified internal procedures. Overall, the soundness of our procedure depends
solely on the soundness of Isabelle’s logic (and code generation2) rather than trusted external
oracles. This is much like Isabelle’s sledgehammer tactic, which sceptically incorporates
various external tools.

Our main contributions are:

• An efficient formalised theory of Tarski queries,
• An efficient approach to univariate sign determination at real algebraic points,
• A practical formally verified procedure for real algebraic problems based on univariate

CAD.

The paper continues at follows: A motivating example (Sect. 2) and a description of the
overall design (Sect. 3) sketch the general idea of our procedure. The construction andmanip-
ulation of real algebraic numbers is developed in (Sect. 4), including a sign determination
procedure for evaluating polynomials at real algebraic points (Sect. 5). The main proof is
described in (Sect. 6), which is followed by a discussion of interaction with external solvers
(Sect. 7). Next, experiments and related work (Sect. 8) are described along with further
discussion of our tactic (Sect. 9). We then conclude with a look towards the future (Sect. 10).

2 A Motivating Example

Unlike the general case of Rn , the restriction of CAD to univariate problems (i.e., to R
1) is

relatively straight-forward. Suppose we wish to prove

∀x . P(x) > 0 ∨ Q(x) ≥ 0

where

P(x) = 1

2
x2 − 1

1 Code is available from https://bitbucket.org/liwenda1990/src_jar_2017.
2 As our tactic is computationally intense, our procedure makes use of the proof by reflection technique [16].
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x
−3 −√
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2

P (x) = 1
2x

2 − 1

Q(x) = x+ 3

Fig. 1 The plot of P(x) = 1
2 x2 − 1 and Q(x) = x + 3

Q(x) = x + 3.

To do so, we can decompose R into disjoint connected components induced by the roots
of P and Q. This is illustrated in Fig. 1:

and it can be observed that both P and Q have invariant signs over each of these components.
For example, as can be seen fromFig. 1, P(x) < 0 and Q(x) > 0 hold for all x ∈ (−√

2,
√
2).

To decide the conjecture, we can pick sample points from each of these components and
evaluate λx . P(x) > 0 ∨ Q(x) ≥ 0 at these points. That is,

∀x . P(x) > 0 ∨ Q(x) ≥ 0

= ∀D ∈ D.∀x ∈ D. P(x) > 0 ∨ Q(x) ≥ 0

= ∀x ∈ {−4,−3,−2,−√
2, 0,

√
2, 2}. P(x) > 0 ∨ Q(x) ≥ 0

= (P(−4) > 0 ∨ Q(−4) ≥ 0) ∧ (P(−3) > 0 ∨ Q(−3) ≥ 0) ∧ . . .

∧(P(2) > 0 ∨ Q(2) ≥ 0)

= True (1)

since

−4 ∈ (−∞,−3)

−3 ∈ {−3}
−2 ∈ (−3,−√

2)

−√
2 ∈ {−√

2}
0 ∈ (−√

2,
√
2)√

2 ∈ {√2}
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2 ∈ (
√
2,∞).

Analogously, to decide an existential formula

∃x . P(x) = 0 ∧ Q(x) > 0,

we have

∃x . P(x) = 0 ∧ Q(x) > 0

= ∃D ∈ D. ∃x ∈ D. P(x) = 0 ∧ Q(x) > 0

= ∃x ∈ {−4,−3,−2,−√
2, 0,

√
2, 2}. P(x) = 0 ∧ Q(x) > 0

= (P(−4) = 0 ∧ Q(−4) > 0) ∨ (P(−3) = 0 ∧ Q(−3) > 0) ∨ . . .

∨(P(2) = 0 ∧ Q(2) > 0)

= True. (2)

In performing these arguments, there were a few “obvious” subtleties:

• The decomposition of R into the seven regions given covered the entire real line. That
is,

(−∞,−3) ∪ {−3} ∪ (−3,−√
2) ∪ {−√

2} ∪ (−√
2,

√
2) ∪ {√2} ∪ (

√
2,∞) = R.

• The “sign-invariance” of P and Q over each region was exploited to allow only a single
sample point to be selected from each region. This property holds as by the Intermediate
Value Theorem, P and Q can only change sign by passing through a root.

• The signs of univariate polynomials were evaluated at irrational real algebraic points like√
2 to determine the truth values of atomic formulas.

In creating our automatic proof procedure, all of this routine reasoning must, of course,
be formalised. Moreover, the isolation of polynomial roots (and thus sign-invariant regions)
and the sign determination for polynomials at real algebraic points are computationally
expensive operations. Computer algebra systems like Mathematica have decades of tuning in
their implementations of these core algebraic algorithms. To have a practical proof procedure,
we wish to take advantage of these highly tuned external tools as much as possible. Let us
next describe how this can be done.

3 A Sketch of Our Certificate-Based Design

There is a rich history of certificate-based, sceptical integrations between proof assistants
and external solvers. Examples include John Harrison’s sums-of-squares method [17] and
the Sledgehammer [31] command in Isabelle.

Certificate-based approaches are motivated by many observations, including:

• External solvers are often highly tuned and run much faster than verified ones.
• Verification of certificates from external solvers is usually much easier than finding them.

Such verification ensures the soundness of the overall tactic.
• Switching between different external solvers does not require changes in formal proofs.

Algorithm 1 sketches our idea for univariate universal formulas. In particular, in line 3, we
use external programs to return real roots of polynomials (i.e.,P) from the quantifier-free part
of the formula (i.e., F(x)). Those roots (i.e., roots) correspond to a decomposition such that
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Algorithm 1 Prove univariate universal formulas over reals
Require: F(x) is a quantifier-free formula over reals
Ensure: Return true if ∀x . F(x) holds
1: procedure universal(∀x . F(x))
2: P ← extract polynomials from F(x) � P ⊆ Z[X ]
3: roots ← real roots of P � Roots returned by external programs
4: samples ← construct sample points from roots
5: if (∀x ∈ samples. F(x)) ∧ (roots are indeed all real roots of P) then
6: return true
7: end if
8: end procedure

each polynomial from P has a constant sign over each component of this decomposition.
Since the roots are returned by untrusted programs, in line 5, we not only check ∀x ∈
samples. F(x) as in Eq. (1) but also certify that these roots are indeed all real roots of P.

The step in line 3 in Algorithm 1 is more commonly referred as (real) root isolation,
which is a classic andwell-studied topic in symbolic computing. Althoughwe can in principle
formalise our own root isolation procedure (e.g., using the Sturm–Tarski theorem), it is utterly
unlikely that our implementation will be competitive with state-of-the-art ones, especially for
polynomials of high degree, large bit-width, orwhose roots are very close together. Therefore,
we delegate this computationally expensive step to external tools.

Algorithm 2 Prove univariate existential formulas over reals
Require: F(x) is a quantifier-free formula over reals
Ensure: Return true if ∃x . F(x) holds
1: procedure existential(∃x . F(x))
2: r ← solution to F(x) � Solution returned by external programs
3: if F(r) then
4: return true
5: end if
6: end procedure

With existential formulas, the situation is even simpler as illustrated in Algorithm 2, since
we do not need to deal with the decomposition internally. Rather, all we need is a real
algebraic witness that satisfies λx . F(x) to certify ∃x . F(x). What is more interesting is that
the satisfaction problem for λx . F(x) can be not only solved by a CAD procedure, which is
complete but not very fast due to its symbolic nature, but also be complemented by highly
efficient incomplete numerical methods. Thus it is natural to externalize the step in line 2 in
Algorithm 2.

4 Encoding Real Algebraic Numbers

External programs in either Algorithms 1 and 2 can return real algebraic numbers (e.g.
√
2).

In this section, we see how to formalise such numbers in Isabelle/HOL.
The real algebraic numbers (Ralg) are real roots of non-zero polynomials with integer

(equivalently, rational) coefficients. They form a countable, computable subfield of the real
numbers. To encode them, we use a polynomial with integer coefficients and a root selection
method to “pin down” the root in question. Common root selection methods include isolating
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intervals, root indices or Thom encodings. We use the root interval approach, that is, a real
algebraic number r ∈ Ralg will be given by

• A polynomial p ∈ Z[x] s.t. p(r) = 0, and
• Two rationals a, b ∈ Q s.t. r is the only root of p contained in [a, b].
To reason over the reals, we define a function Alg to embed those real algebraic numbers

into the reals:

Alg:: "int poly ⇒ float ⇒ float ⇒ real"

where int poly is a polynomial with integer coefficients and the two float arguments
represent an interval. Note, a float in Isabelle/HOL is a dyadic rational number of the form

a2b where a, b ∈ Z.

Compared to our previous work [21], where a pair of rational numbers is used to represent an
interval, the dyadic rational approach is more efficient due to the elimination of ubiquitous
greatest common divisor (gcd) operations within rational arithmetic.

In Isabelle/HOL, a real number is represented as a Cauchy sequence of type nat ⇒ rat,
where a Cauchy sequence is defined as

definition
cauchy :: "(nat ⇒ rat) ⇒ bool"

where
"cauchy X ←→ (∀r>0. ∃k. ∀m≥k. ∀n≥k. |X m - X n| < r)"

We then convert an encoding of a real algebraic number into a sequence of type nat ⇒ rat.
The idea is to bisect the isolating interval through each recursive call, and proceed with the
half where the sign of the polynomial changes at its end points:

fun to_cauchy:: "rat poly × rat × rat ⇒ nat ⇒ rat" where
"to_cauchy (_, lb, ub) 0 = (lb+ub)/2"|
"to_cauchy (p, lb, ub) (Suc n) = (

let c=(lb+ub)/2
in if poly p lb * poly p c ≤ 0

then to_cauchy (p, lb, c) n
else to_cauchy (p, c, ub) n)"

where poly p x evaluates the polynomial p at the point x. Note, rat poly × rat × rat

encodes a real algebraic number here (rather than int poly × float × float), as we can
embed int and float into rat.

It can be then shown that the sequence constructed by to_cauchy (p, lb, ub) is indeed
a Cauchy sequence and the real number represented by this sequence resides within the
interval [lb, ub], provided lb < ub:

lemma to_cauchy_cauchy:
fixes p::"rat poly" and lb ub ::rat
assumes "lb<ub"
defines "X≡to_cauchy (p,lb,ub)"
shows "cauchy X"

lemma to_cauchy_bound:
fixes p::"rat poly" and lb ub ::rat
defines "X≡to_cauchy (p,lb,ub)"
assumes "lb<ub"
shows "lb ≤ Real X" "Real X ≤ ub"
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Note, the function Real of type (nat ⇒ rat) ⇒ real constructs a real number from its
underlying representation (i.e. a Cauchy sequence).

Finally, we can finish the definition of Alg:

definition valid_alg::"int poly ⇒ float ⇒ float ⇒ bool" where
"valid_alg p lb ub = (lb < ub ∧ poly p lb * poly p ub < 0

∧ card ({x::real. poly p x = 0 ∧ lb < x ∧ x < ub}) = 1)"

definition Alg:: "int poly ⇒ float ⇒ float ⇒ real" where
"Alg p lb ub = (if valid_alg p lb ub

then Real (to_cauchy (p, lb, ub))
else undefined)"

where valid_alg p lb ub ensures

• lb < ub,
• The polynomial p is of different signs (and non-zero) at lb and ub,
• The polynomial p has exactly one real root within the interval (lb,ub).

With the help of Alg, we can now encode the real algebraic number
√
2 as

Alg [:-2,0,1:] 1 2

where [:-2,0,1:] corresponds to the polynomial −2x0 + 0x1 + 1x2 = x2 − 2, and 1 and
2 are the lower bound and upper bound respectively, such that

√
2 is the only root of x2 − 2

within the interval (1, 2).
Furthermore, we can formally derive that Alg p lb ub is indeed a root of p within the

interval (lb,ub):

lemma alg_bound_and_root:
fixes p::"int poly" and lb ub::float
assumes "valid_alg p lb ub"
shows "lb < Alg p lb ub" and "Alg p lb ub < ub"

and "poly (of_int_poly p) (Alg p lb ub) = 0"

where of_int_poly p embeds the integer polynomial p into a real one.

5 Deciding the Sign of a Univariate Polynomial at Real Algebraic Points

In the previous section, we described how to encode a real algebraic number as an integer
polynomial and two dyadic rational numbers. Now, suppose we have

√
2 = (x2 − 2, 1, 2)

where (x2 − 2, 1, 2) is abbreviated from Alg [:-2,0,1:] 1 2 for the sake of readability.
How can we computationally prove that

P(
√
2) = 0 where P(x) = 1

2
x2 − 1 ?

Considering that Ralg is a computable subfield of R and has decidable arithmetic and
comparison operations, it is natural to evaluate such formulas through algebraic arithmetic:

P(
√
2) = 1

2
×alg (x2 − 2, 1, 2) ×alg (x2 − 2, 1, 2) −alg 1
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= 1

2
×alg (x − 2, 1, 3) −alg 1

=
(

x − 1,
1

2
,
3

2

)
−alg 1

= 0,

where×alg and−alg are exact algebraic arithmetic operations that usually involve calculation
of bivariate resultants. Although such computations are currently possible in Isabelle/HOL
[21,36], they are far from efficient.

In this section,wedescribe a verifiedprocedure to decide the signof univariate polynomials
with rational coefficients at real algebraic points which uses only rational (or dyadic rational)
arithmetic rather than costly algebraic arithmetic.

5.1 The Sturm–Tarski Theorem

We abbreviate R ∪ {−∞,∞} as R, the extended real numbers.

Definition 1 (Tarski Query) The Tarski query TaQ(Q, P, a, b) is

TaQ(Q, P, a, b) =
∑

x∈(a,b),P(x)=0

sgn(Q(x))

where a, b ∈ R, P, Q ∈ R[X ], P �= 0 and sgn : R → {−1, 0, 1} is the sign function.

The Sturm–Tarski theorem [23, Chapter 8] (or Tarski’s theorem [2, Chapter 2]) is essen-
tially an effective way to compute Tarski queries through some remainder sequences:

Theorem 1 (Sturm–Tarski) The Sturm–Tarski theorem states

TaQ(Q, P, a, b) = Var(SRemS(P, P ′Q); a, b)

where P �= 0, P, Q ∈ R[X ], P ′ is the first derivative of P, a, b ∈ R, a < b and are not
roots of P, SRemS(P, P ′Q) is the signed remainder sequence of P and P ′Q, and

Var([p0, p1, . . . , pn]; a, b)

= Var([p0(a), p1(a), . . . , pn(a)]) − Var([p0(b), p1(b), . . . , pn(b)])
is the difference in the number of sign variations (after removing zeroes) in the polynomial
sequence [p0, p1, . . . , pn] evaluated at a and b.

Note that the more famous Sturm’s theorem, which counts the number of distinct real
roots (of a univariate polynomial) within an interval, is a special case of the Sturm–Tarski
theorem when Q = 1.

5.2 A Formal Proof of the Sturm–Tarski Theorem

Our proof of the Sturm–Tarski theorem in Isabelle is based on Basu et al. [2, Chapter 2] and
Cohen’s formalisation in Coq [6].

The core idea of our formal proof is built around theCauchy index. First defined byCauchy
in 1837, the Cauchy index of a real rational function encodes deep properties of its roots and
poles, and can be used as the basis of an algebraic method for computing Tarski queries.3

3 Besides the application described in this section, the Cauchy index also plays a critical role in the Routh–
Hurwitz theorem. Interested readers may consult [32, Chapter 10, 11] for historical notes.
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x−1 1 3

Fig. 2 Graph of the rational function (x − 4)/((x − 3)(x − 1)2(x + 1))

Definition 2 Given P, Q ∈ R[x] and x ∈ R, jump(P, Q, x) is defined as

jump(P, Q, x) =

⎧⎪⎨
⎪⎩

−1 if limu→x− Q(u)
P(u)

= ∞ and limu→x+ Q(u)
P(u)

= −∞
1 if limu→x− Q(u)

P(u)
= −∞ and limu→x+ Q(u)

P(u)
= ∞

0 otherwise.

For example, let Q = x − 4 and P = (x − 3)(x − 1)2(x + 1). The graph of Q/P is shown
in Fig. 2. We have

jump(P, Q, x) =

⎧⎪⎨
⎪⎩

1 when x = −1

−1 when x = 3

0 otherwise.

TheCauchy index cindex_poly a b q p is the sumof the jumps of q/p over the interval
(a, b):
definition cindex_poly:: "real ⇒ real ⇒ real poly ⇒ real poly ⇒ int"

where
"cindex_poly a b q p≡ (

∑
x∈{x. poly p x=0 ∧ a < x ∧ x < b}.

jump_poly q p x)"

By case analysis, we can prove a connection between the Tarski query and the Cauchy
index:
lemma cindex_poly_taq:

fixes p q::"real poly" and a b::real
shows "taq {x. poly p x = 0 ∧ a < x ∧ x < b} q

=cindex_poly a b (pderiv p * q) p"

where taq is a formal definition of the Tarski query
definition taq :: "’a::linordered_idom set ⇒ ’a poly ⇒ int" where

"taq s q = (
∑

x∈s. sign (poly q x))"

and pderiv p is the first derivative of p.
Moreover, the Cauchy index can be related to Euclidean division (mod) on polynomials

by a recurrence:
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cindex_poly_rec:
fixes p q::"real poly" and a b::real
assumes "a < b" and "poly (p * q) a �=0"

and "poly (p * q) b �=0"
shows "cindex_poly a b q p = cross (p * q) a b

+ cindex_poly a b (- (p mod q)) q"

where

cross p a b =

⎧⎪⎨
⎪⎩

0 if p(a)p(b) ≥ 0

1 if p(a)p(b) < 0 and p(a) < p(b)

−1 if p(a)p(b) < 0 and p(a) ≥ p(b).

A similar recurrence relation holds for the number of sign variations of the signed remainder
sequences (changes_itv_smods):

lemma changes_itv_smods_rec:
fixes p q::"real poly" and a b::real
assumes "a < b" and "poly (p * q) a �= 0"

and "poly (p * q) b �= 0"
shows "changes_itv_smods a b p q = cross (p * q) a b

+ changes_itv_smods a b q (- (p mod q))"

where changes_itv_smods is defined as

definition changes_itv_smods::
"real ⇒ real ⇒ real poly ⇒ real poly ⇒ int" where

"changes_itv_smods a b p q = (
let

ps = smods p q
in

changes_poly_at ps a - changes_poly_at ps b)"

and the signed remainder sequence (smods) is defined as

function smods:: "real poly ⇒ real poly ⇒ (real poly) list" where
"smods p q= (if p = 0 then

[]
else

p # (smods q (-(p mod q))))"

and changes_poly_at ps a returns the number of sign changes when evaluating a list of
polynomials (ps) at a.

Finally, by combiningcindex_poly_taq ,cindex_poly_rec andchanges_itv_smods_rec,
we derive the Sturm–Tarski theorem:

theorem sturm_tarski_interval:
fixes p q::"real poly" and a b::real
assumes "a < b" and "poly p a �= 0" and "poly p b �= 0"
shows "taq {x. poly p x = 0 ∧ a < x ∧ x < b} q

= changes_itv_smods a b p (pderiv p * q)"

Note, this is just the bounded case of the Sturm–Tarski theorem. Proofs for the unbounded
and half-bounded cases are similar.

5.3 Sign Determination Through the Sturm–Tarski Theorem

Given a polynomial q with rational coefficients and our encoding of a real algebraic number
α

α = (p, lb, ub)
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where p is an integer polynomial, and lb and ub are dyadic rationals, we can effectively decide
the sign of q(α) using the Sturm–Tarski theorem, provided valid_alg p lb ub holds. The
rationale behind is that valid_alg p lb ub ensures α is the only root of p within the
interval (lb, ub), hence

sgn(q(α)) =
∑

x∈(lb,ub),p(x)=0

sgn(q(x))

= TaQ(q, p, lb, ub)

= Var(SRemS(p, p′q); lb, ub).

Importantly, it can be observed that evaluating Var(SRemS(p, p′q); lb, ub) requires only
rational arithmetic rather than costly algebraic arithmetic.

To be even more efficient, we refine the procedure further to make use of dyadic rational
arithmetic. The main advantage of dyadic rational arithmetic over rational arithmetic are
reduced normalization steps and possible bit-level operations. For example, consider two
rational numbers a1

b1
and a1

b2
where a1, b1, a2, b2 ∈ Z, their sum is

a1
b1

+ a2
b2

= a1b2 + a2b1
b1b2

= (a1b2 + a2b1)/c

(b1b2)/c
where c = gcd(a1b2 + a2b1, b1b2).

To counter the growth in the size of representations, we usually need to normalize the
result by factoring out the gcd. Such gcd operations can be the source of major computational
expense. Thankfully, they are unnecessary in the context of dyadic rationals. The sum of two
dyadic rationals (a1, e1) and (a2, e2) where a1, e1, a2, b2 ∈ Z is

a12
e1 + a22

e2 =
{

(a12e1−e2 + a2)2e2 if e1 > e2
(a1 + a22e2−e1)2e1 otherwise.

Moreover, multiplications by powers of two, such as a12e1−e2 , can be optimised by shift
operations.

However, the problem with dyadic rational numbers is that they do not have the division
operation (e.g. 1 × 20 divided by 3 × 20 is no longer a dyadic rational), hence they do not
form a field, while Euclidean division only works for polynomials over a field. This problem
can be solved if we switch from Euclidean division (mod and div):

P = (P div Q) Q + (P mod Q) and (Q = 0 ∨ deg(P mod Q) < deg(Q))

to pseudo-division (pmod and pdiv) [10]:

lc(Q)1+deg(P)−deg(Q) P = (P pdiv Q) Q + (P pmod Q)

and (Q = 0 ∨ deg(P mod Q) < deg(Q))

where lc(Q) is the leading coefficient of Q,

since pseudo-division can be carried out by polynomials over an integral domain (rather than
a field).

Based on pseudo-division, the signed pseudo-remainder sequence (SPRemS) can be
defined:
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function spmods :: "’a::idom poly ⇒ ’a poly ⇒ (’a poly) list" where
"spmods p q= (if p=0 then [] else

let
m=(if even(degree p+1-degree q) then -1 else -lead_coeff q)

in
Cons p (spmods q (smult m (p pmod q))))"

where smult is the scalar product on polynomials and lead_coeff q is the leading coeffi-
cient of q . Accordingly, the function to count the difference in sign variations can be refined:

definition changes_itv_spmods::
"’a ::linordered_idom ⇒ ’a ⇒ ’a poly ⇒ ’a poly ⇒ int" where
"changes_itv_spmods a b p q= (let ps = spmods p q in

changes_poly_at ps a - changes_poly_at ps b)"

and linked to the previous one based on signed remainder sequences (SRemS):

lemma changes_spmods_smods:
fixes p q::"float poly" and a b::"float"
shows "changes_itv_spmods a b p q

= changes_itv_smods (real_of_float a) (real_of_float b)
(of_float_poly p) (of_float_poly q)"

where real_of_float embeds a float into real and of_float_poly coverts a float

poly (i.e. polynomial with dyadic rational coefficients) to a real poly by embedding each
of the coefficients into real.

Finally, we define a function sgn_at that returns the sign of a univariate polynomial at
some point:

definition "(sgn_at::real poly⇒real⇒real) = (λq x. sgn (poly q x))"

Note, for now, if either x or any coefficient of q is an irrational real number (e.g. an irrational
real algebraic number), evaluating sgn_at q x will raise an exception, as Isabelle/HOL, by
default, only supports rational arithmetic. Although we can eliminate some such exceptions
by loading any of the recent algebraic arithmetic libraries [21,36], we consider exact algebraic
arithmetic too slow for our purpose as stated at the beginning of Sect. 5. Alternatively, by
proving some code equations, we can restore the executability of sgn_at q x when x is
constructed by Alg p lb ub and coefficients of q are rational reals:

lemma sgn_at_code_alg[code]:
fixes q::"real poly" and p::"int poly" and lb ub::float
shows "sgn_at q (Alg p lb ub) = (

if valid_alg p lb ub ∧ (∀x∈set (coeffs q). is_rat x) then
(let

p’::float poly=of_int_poly p;
q’::float poly=of_int_poly (int_poly q)

in
of_int (changes_itv_spmods lb ub p’ (pderiv p’ * q’)))

else Code.abort (STR ’’Invalid sgn_at’’)
(λ_. sgn_at q (Alg p lb ub)))"

where

• ∀x∈set (coeffs q). is_rat x checks if each coefficient of q is rational,
• of_int_poly converts an integer polynomial into a dyadic rational one,
• int_poly clears denominators in the coefficients by multiplying each coefficient by the

least common multiple (of the denominators),
• Code.abort throws an exception, if either (p, lb, ub) is an invalid representation of a

real algebraic number or the polynomial q has any non-rational coefficient.
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And note that evaluating changes_itv_spmods lb ub p’ (pderiv p’ * q’) requires
only dyadic arithmetic, which is much more efficient than exact algebraic arithmetic.

Moreover, the executability of valid_alg is restored similarly as well:

lemma [code]:
fixes p::"int poly" and lb ub::float
shows "valid_alg p lb ub = (lb < ub

∧ (sgn (poly (of_int_poly p) lb) * sgn (poly (of_int_poly p)
ub) < 0)

∧ changes_itv_spmods lb ub (of_int_poly p) (pderiv (of_int_poly p))
= 1)"

where

changes_itv_spmods lb ub (of_int_poly p) (pderiv (of_int_poly p)) = 1

checks if the polynomial p has exactly one real root within the interval (lb, ub) by exploiting
Sturm’s theorem (a special case of our formalised Sturm–Tarski theorem).

After restoring executability of sgn_at on real algebraic numbers, we can now check the
sign of P(x) = 1

2 x2 − 1 at
√
2 by typing the following command:

value "sgn_at [:-1,0,1/2:] (Alg [:-2,0,1:] 1 2)"

which returns 0 (i.e. P(
√
2) = 0).

5.4 Remark

A formal proof of the Sturm–Tarski theorem is not new among proof assistants: it has been
formalised in PVS [25] andCoq [6]. However, as far aswe know,we are the first to exploit this
theorem to build a verified sign determination procedure of real algebraic numbers, which
uses only rational or dyadic rational arithmetic.

Real algebraic numbers are essential in symbolic computing, and well studied. In gen-
eral, exact real algebrac arithmetic is rarely used in modern computer algebra systems due
to its extreme inefficiency. For example, consider the problem of isolating the real roots of
a polynomial with real algebraic coefficients. Modern approaches usually use sophisticated
techniques to soundly approximate those coefficients to a certain precision rather than car-
rying out exact algebraic arithmetic [5,33,35], relying on exact symbolic procedures as a
fall-back in degenerate cases.

Following these efficient modern approaches, our sign determination procedure can be
improved in at least the following ways:

• Sophisticated interval arithmetic can be used to decide the sign before resorting to a
remainder sequence, as has been done in Z3 [10]. This approach should help when the
sign is non-zero.

• Pseudo-division, which we are currently using for building remainder sequences, is not
good for controlling coefficients growth. More sophisticated approaches, such as sub-
resultant sequences and modular methods, can be used to optimise the calculation of
remainder sequences.

6 The Formal Development of the Decision Procedure

In this section, we describe the main proof underlying our tactic.
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6.1 Parsing Formulas

The first step of our tactic is to parse the target formula into a structured form. This process is
usually referred as reification [4] in Isabelle/HOL. More specifically, given an Isabelle/HOL
term e of type τ , we define a (more structured) datatype δ and an interpretation function
interp of type δ ⇒ τ list ⇒ τ , such that for some e‘ of type δ

e = interp e‘ xs

where xs is a list of free variables in e. Subsequently, instead of directly dealing with e, we
now convert it into a more pleasant form interp e‘ xs where e‘ is in fact a formal language
that captures the structure of e.

The datatypes we defined to capture the structure of target univariate formulas are as
follows:

datatype num = C real —Constant
| Var nat —Variable index
| Add num num | Minus num | Mul num num | Power num nat

datatype norm_num2 =
Pol "int poly" nat — an integer polynomial and its variable index
| Const real — constant
| Abnorm num — in case of anomalies (e.g., bivariate)

datatype qf_form2 =
Pos norm_num2 — is positive | Zero norm_num2 — is zero
| Neg qf_form2 — negation
| Conj qf_form2 qf_form2 — conjunction
| Disj qf_form2 qf_form2 — disjunction
| T — true | F — false

datatype norm_form2 =
QF qf_form2 — quantifier free
| ExQ norm_form2 — existential
| AllQ norm_form2 — universal

and the interpretation functions:

fun num_interp:: "num ⇒ real list ⇒ real" where
"num_interp (C i) vs = i"|
"num_interp (Var v) vs = vs!v"|
"num_interp (Add num1 num2) vs = num_interp num1 vs + num_interp num2

vs "|
"num_interp (Minus num) vs = - num_interp num vs "|
"num_interp (Mul num1 num2) vs = num_interp num1 vs * num_interp num2

vs "|
"num_interp (Power num n) vs = (num_interp num vs)ˆn"

fun norm_num2_interp :: "norm_num2 ⇒ real list ⇒ real" where
"norm_num2_interp (Pol p v) vs = poly (of_int_poly p) (vs!v)"|
"norm_num2_interp (Const c) vs = c"|
"norm_num2_interp (Abnorm num) vs = num_interp num vs" — anomaly

fun qf_form2_interp:: "qf_form2 ⇒ real list ⇒ bool" where
"qf_form2_interp (Pos norm_num) vs = (norm_num2_interp norm_num

vs > 0)"|
"qf_form2_interp (Zero norm_num) vs = (norm_num2_interp norm_num

vs = 0)"|
"qf_form2_interp (Neg qf_form) vs = (¬ qf_form2_interp qf_form vs)" |
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"qf_form2_interp (Conj qf_form1 norm_form2) vs
= (qf_form2_interp qf_form1 vs ∧ qf_form2_interp norm_form2 vs)"|

"qf_form2_interp (Disj qf_form1 qf_form2) vs
= (qf_form2_interp qf_form1 vs ∨ qf_form2_interp qf_form2 vs)"|

"qf_form2_interp T vs = True"|
"qf_form2_interp F vs = False"

fun norm_form2_interp:: "norm_form2 ⇒real list ⇒ bool" where
"norm_form2_interp (QF qf) vs = qf_form2_interp qf vs"|
"norm_form2_interp (ExQ norm_form) vs

= (∃x. norm_form2_interp norm_form (x#vs))"|
"norm_form2_interp (AllQ norm_form) vs

= (∀x. norm_form2_interp norm_form (x#vs))"

Given the definition of a (structured) datatype norm_form2 and the corresponding inter-
pretation function norm_form2_interp, target formulas can now be parsed. For example,
we can convert a univariate formula

"∀x::real. x > 1/2 ∨ x < 1"

into an equivalent form

"norm_form2_interp
(AllQ (QF (Disj (Pos (Pol [:- 1, 2:] 0))

(Pos (Pol [:1, - 1:] 0))
)))

[]"

In particular, note

qf_form2_interp (Pos (Pol [:- 1, 2:] 0)) [x]
= (poly [:- 1, 2:] x > 0)
= (x > 1/2)

in which inequalities have been parsed into a polynomial sign determination problem.
On the contrary, a bivariate non-closed formula such as

"∃x::real. x + y >0"

will be converted into

"norm_form2_interp
(ExQ (QF (Pos

(Abnorm
(Add (Add (Add (C 0) (Mul (Var 0) (Add (C 1) (Mul (Var 0) (C 0)))))

(Add (C 0) (Mul (Var 1) (Add (C 1) (Mul (Var 1) (C 0))))))
(C 0))))))
[y]"

where the Abnorm constructor indicates that such formula is not supported by our current
tactic.

6.2 Existential Case

To discharge a univariate existential formula is easy: we can computationally check if a
certificate (i.e., a real algebraic number) returned by an external solver satisfies the quantifier-
free part of the formula:

lemma ExQ_intro:
fixes x::"alg_float" and qf_form::qf_form2
assumes "qf_form2_interp qf_form [of_alg_float x]"
shows "norm_form2_interp (ExQ (QF qf_form)) []"
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where x of type alg_float

datatype alg_float =
Arep "int poly" float float — representation of a real algebraic number

| Flt float — a small optimization in case the number is dyadic rational

is a certificate that is supposed to be instantiated by an external solver. The function
of_alg_float converts x from alg_float to real. In other words, to prove an existen-
tial formula:

"norm_form2_interp (ExQ (QF qf_form)) []"

we can computationally check the truth value of the quantifier-free part of the formula at x:

"qf_form2_interp qf_form [of_alg_float x]"

which is possible due to the sign determination procedure described in Sect. 5.

6.3 Universal Case

For the universal case, the core lemma is as follows:

lemma utilize_samples:
fixes P::"real ⇒ bool" and decomps::"real set set"

and samples::"real set" and f::"real set ⇒ real"
assumes "

⋃
decomps = IR"

and "∀d∈decomps. ∀x1∈d.∀x2∈d. P x1 = P x2"
and "∀d∈decomps. f d∈d" and "bij_betw f decomps samples"

shows "(∀x. P x) = (∀pt∈samples. P pt)"

where bij_betw f decomps samples states that f::real set ⇒ real is a bijective
function between the decomposition decomps::real set set and the sample points
samples::real set. Essentially, what the lemma utilize_samples shows is that given
a predicate P::real ⇒ bool, an unbounded universal formula ∀x. P x is equivalent to a
bounded one ∀pt∈samples. P pt, if the truth value of P is constant over each component
of the decomposition: ∀d∈decomps. ∀x1∈d.∀x2∈d. P x1 = P x2.

On top of the lemma utilize_samples, we similarly convert an unbounded univariate
real formula into a bounded one:

lemma allQ_subst:
fixes root_reps::"alg_float list" and pols::"float poly set"

and qf_form::qf_form2
defines "samples≡map of_alg_float (mk_samples root_reps)"
assumes "Some pols = extractPols qf_form"

and "ordered_reps root_reps"
and "contain_all_roots root_reps pols"
and "valid_list root_reps"

shows "norm_form2_interp (AllQ (QF qf_form)) vs
= (∀x ∈ (set samples). norm_form2_interp (QF qf_form) (x#vs))"

where

• root_reps::alg_float list is a certificate that should be instantiated by an external
solver. More specifically, root_reps should be the representation of a list of real roots
(in ascending order) of polynomials from the quantifier-free part of the target formula,

• map of_alg_float (mk_samples root_reps) constructs sample points from the rep-
resentation of a list of roots,

• extractPols qf_form extracts polynomials from the quantifier-free part qf_form,
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• ordered_reps root_reps and valid_list root_reps together ensure that the rep-
resentation of roots are valid and those roots are in ascending order,

• contain_all_roots roots_reps pols checks if root_reps is a representation of all
real roots of the polynomials pols. Specifically, by Sturm’s theorem, the number of total
distinct real roots of each p ∈ pols can be computed, which can be then compared with
the number of r ∈ root_reps that p(r)=0.

Most importantly, all assumptions of the lemma allQ_subst and its right-hand side

(∀x ∈ (set samples). norm_form2_interp (QF qf_form) (x#vs))

can be computationally checked, through which we can prove an unbounded univariate
universal formula: norm_form2_interp (AllQ (QF qf_form)) vs.

7 Linking to an External Solver

Certificates for both existential and universal cases can be produced by any program per-
forming univariate CAD. For now, we implement the program on top of Mathematica. More
specifically, the universal certificates are constructed by the Mathematica command Semial-
gebraicComponentInstances, which gives sample points in each connected component of a
semialgebraic set. The existential certificates are constructed by the command FindInstance,
which incorporates powerful numerical methods to accelerate the search for real algebraic
sample points.

Also, it may be worth mentioning that after a certificate has been found, our tactic will
record it (as a string) so that repeating the proof no longer requires the external solver. This
is much like the sums-of-squares tactic [17].

In general, the certificate-based design grants us much flexibility: We can easily switch to
a more efficient external solver without modifying existing formal proofs. In fact, we were
first using an implementation of univariate CAD built within MetiTarski, which turned out
to be not very efficient, and we simply switched to the current one based on Mathematica. In
the future, we plan to experiment with other open-source CAD implementations such as Z3
and QEPCAD to provide more options with external solvers.

8 Experiments and Related Work

The most relevant work is the recent tarski strategy by Narkawicz et al. [25] in PVS. Both
their work and ours rely on a formal proof of the Sturm–Tarski theorem (which they call
Tarski’s theorem) and handle roughly the same class of problems4 (i.e., first-order univariate
formulas over reals). There are two main differences between their work and ours:

• Their procedure resembles Tarski’s original quantifier elimination [2, Chapter 2] and
Cyril Cohen’s quantifier elimination procedure in Coq [6, Chapter 12] by making use of
both the Sturm–Tarski theorem and matrices. In contrast, our tactic is based on CAD and
real algebraic numbers (instead of matrices).

• Their procedure is entirely built within PVS, while ours sceptically makes use of efficient
external programs to generate certificates.

4 In fact, their tactic does not handle arbitrary boolean expressions like ours, but we believe this should not
be too hard to overcome.
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ex1 : ∀x.¬(x ≥ −9x < 10 ∧ x4 > 0) ∨ x12 > 0

ex2 : ∀x.¬((x − 2)2(−x+ 4) > 0 ∧ x2(x − 3)2 ≥ 0

∧ x − 1 ≥ 0 ∧ −(x − 2)2 + 1 > 0) ∨ (−(x − 11
12

))3(x − 41
10

)3 ≥ 0

ex3 : ∃x. x5 − x − 1 = 0 ∧ x12 +
425
23

x11 − 228
23

x10 − 2x8 − 896
23

x7 − 394
23

x6+

456
23

x5 + x4 +
471
23

x3 +
645
23

x2 − 31
23

x − 228
23

= 0 ∧ x3 + 22x2 − 31 ≥ 0

∧ x22 − 234
567

x20 − 419x10 + 1948 > 0

ex4 : ∀x. x > 0 ∨ 20
9
x3 +

5
9
x2 − 61

9
x > −4 ∨ 1 ≤ x ∨ x ≤ 0 ∨ 10

9
x2 − 19

9
x ≤ −1

∨ 1
18

x3 +
31
45

x2 − 13
9
x ≤ − 7

10
∨ 20

9
x3 +

5
9
x2 − 61

9
x ≤ −4

ex5 : ∀x. − x3

3
− 10

3
x2 − 5

6
x > 0 ∨ 1

3
x3 +

10
3
x2 +

5
6
x > 0 ∨ 1 ≤ x ∨ x ≤ 0

∨ 10
9
x2 − 19

9
x ≤ −1 ∨ 1

18
x3 +

31
45

x2 − 13
9
x ≤ − 7

10

∨ 14
15

x3 − 64
15

x2 − 101
30

x ≤ −11
5

∨ 20
9
x3 +

5
9
x2 − 61

9
x ≤ −4

ex6 : ∃x. − 70x6 − 2052
5

x5 − 4329
5

x4 − 5409
10

x3 − 267
2

x2 − 51
10

x > − 7
10

∧ 49
162

x9 +
49
3
x8

+
175
18

x7 +
115774
405

x6 +
77743
135

x5 − 57328
135

x4 − 135853
810

x3 − 71681
270

x2 − 10327
270

x > −721
90

∧ 7
27

x8 +
280
27

x7 − 595
54

x6 +
18964
135

x5 +
2698
135

x4 − 24217
270

x3 − 251
6

x2 − 2981
90

x > −206
45

∧ 7
54

x7 +
112
27

x6 +
329
90

x5 +
2672
135

x4 − 7933
270

x3 +
169
18

x2 − 799
90

x > −103
90

∧ 7
27

x8 +
280
27

x7

+
935
54

x6 +
7264
135

x5 +
11323
135

x4 − 12217
270

x3 − 701
6

x2 − 781
90

x > −77
15

∧ 2
9
x7 +

52
9
x6 − 17

6
x5

+
2353
90

x4 +
307
45

x3 − 811
30

x2 − 361
30

x > −44
15

∧ 1
9
x6 + 2x5 +

2
15

x4 +
41
90

x3 − 2
15

x2

− 33
10

x > −11
15

∧ 49
162

x8 +
1540
81

x7 +
1109
27

x6 +
23483
810

x5 +
65378
405

x4 − 11549
270

x3 − 70225
324

x2

− 1339
405

x > −721
60

∧ 7
27

x7 +
203
18

x6 − 52
9
x5 +

7753
270

x4 +
5191
180

x3 − 2263
45

x2 − 10741
540

x > −103
15

∧ 2
9
x6 +

59
9
x5 − 493

36
x4 +

2113
90

x3 − 811
180

x2 − 1481
90

x > −22
5

∧ 1
9
x5 +

17
9
x4 − 257

60
x3 +

563
90

x2

− 913
180

x > −11
10

∧ 20
9
x4 − 5

2
x3 +

10
3
x2 − 91

18
x > −2 ∧ 10

9
x3 − 25

18
x2 − 2

9
x > −1

2
∧ 20

9
x3

+
5
9
x2 − 61

9
x > −4 ∧ 1 > x ∧ x > 0 ∧ 10

9
x2 − 19

9
x > −1 ∧ 1

18
x3 +

31
45

x2 − 13
9
x > − 7

10
∧ 1

9
x4

+
34
15

x3 − 53
30

x2 − 253
90

x > −11
5

∧ 2
9
x5 +

82
9
x4 +

86
15

x3 − 2051
90

x2 − 97
90

x > −44
5

∧ 8
81

x8

+
931
81

x7 +
3113
27

x6 − 289811
1620

x5 +
264373
810

x4 +
30583
270

x3 − 298609
810

x2 − 93307
1620

x > −193
5

∧ 7
27

x7 +
38
3
x6 +

28
9
x5 − 2686

135
x4 +

6397
60

x3 − 9151
90

x2 − 4741
540

x > −77
10

Fig. 3 Comparison between our tactic in Isabelle and the tarski strategy in PVS: univ_rcf includes certificate
searching and checking, while univ_rcf_cert includes only checking
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ex7 : ∀x. x < −1 ∨ 0 > x ∨ 1
8
x7 +

1207
35

x6 +
7083
10

x5 + 4983x4 +
64405

4
x3 + 26169x2

+
41613

2
x > −6435 ∨ 35x12 + 22461058620x2 + 11821609800x ≤ 46204x11

+ 5263834x10 + 144537452x9 + 1758662439x8 + 10317027768x7 + 31842714428x6

+ 54212099480x5 + 45938678170x4 + 4171407240x3 ∨ x ≤ 0 ∨ 753x10 + 58568x9

+ 938908x8 + 6857016x7 + 27930066x6 + 68338600x5 + 102560612x4 + 92372280x3

+ 45805760x2 + 9609600x ≤ 0 ∨ 10x11 + 1101329460x2 + 788107320x ≤ 9179x10

+ 1061504x9 + 24397102x8 + 240283734x7 + 1063536663x6 + 2362290448x5

+ 2625491260x4 + 782617220x3 ∨ 5x10 + 81290790x2 + 90935460x ≤ 2828x9

+ 356071x8 + 6846880x7 + 51834563x6 + 161529144x5 + 237512625x4

+ 125595120x3 ∨ 207x9 + 11237x8 + 138652x7 + 794964x6 + 2505504x5 + 4581220x4

+ 4837448x3 + 2735040x2 + 640640x ≤ 0 ∨ 5x8 ≤ 608x7 + 10261x6 + 63520x5

+ 192458x4 + 303324x3 + 238560x2 + 73920x ∨ 98x8 + 3514x7 + 32711x6 + 142928x5

+ 332962x4 + 424284x3 + 278880x2 + 73920x ≤ 0 ∨ x ≤ −1

Time (s)

Formula univ rcf (Isabelle) univ rcf cert (Isabelle) tarski (PVS)

ex1 0.9 0.3 2.0
ex2 1.4 0.6 6.8
ex3 1.6 0.7 13.0
ex4 1.3 0.5 20.1
ex5 1.6 0.6 315.7
ex6 5.6 3.9 timeout
ex7 38.4 34.9 timeout

Note: timeout indicates failure to terminate within 24 hours

Fig. 3 continued

To compare both tactics empirically, we have conducted experiments on several typical
examples from their paper5 and the MetiTarski project6 [29]. The experiments are run on a
desktop with an Intel Core 2 Quad Q9400 (quad core, 2.66 GHz) CPU and 8 gigabytes RAM.
Results of the experiments are illustrated in Fig. 3, where our univ_rcf tactic includes both
certificate searching and checking process, while the univ_rcf_cert does the checking part
only (when repeating a proof with certificates already recorded as a string).

In general, the experiments indicate that our tactic outperforms the tarski strategy
in PVS. Particularly, the advantage of our tactic becomes greater as the problems become
more complex, which can be attributed to the fact that our tactic has much better worst-case
computational complexity (polynomial vs. exponential in the number of polynomials).

In the case of general multivariate problems, the CAD procedure is doubly exponential
while Tarski’s quantifier elimination procedure is non-elementary in the number of variables
[2, Chapter 11]). When limited to univariate problems, the CAD procedure degenerates
to root isolation and sign determination on a set of univariate polynomials, which is of
polynomial complexity in the number of polynomials and their degree bound [2, Chapter 10]).

5 http://shemesh.larc.nasa.gov/people/cam/Tarski/.
6 http://www.cl.cam.ac.uk/~gp351/cicm2012/.
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In comparison, Tarski’s quantifier elimination procedure, even when limited to univariate
problems, is still exponential in the number of polynomials [7].

In addition, it is worth noting that as the problems become more complex (e.g., ex6 and
ex7 in Fig. 3), certificate checking becomes the bottleneck factor of our tactic (especially
for universal problems). This indicates that, despite the fact that certificate searching is
much harder than certificate checking, the Mathematica implementation is still much more
efficient than our verified certificate-checking procedure. This leaves much room for future
optimisations.

Our work has also been greatly inspired by Cyril Cohen’s PhD thesis [6], within which a
quantifier elimination procedure has been built upon the Sturm–Tarski theorem and real alge-
braic numbers formalised within the Coq theorem prover. However, our goals and approaches
are very different.

Cohen’swork is part of a large project that has formalised theFeit–Thompson theorem (odd
order theorem) in Coq [15], and focuses more on theoretical developments than we do. For
example, they proved the Sturm–Tarski theorem to construct an RCF quantifier elimination
procedure in the spirit of Tarski’s original method, which has important theoretical properties
but is not practical as a proof procedure. Moreover, he has formalised arithmetic on real
algebraic numbers and shown that they form a real closed field via resultants. We have not
formalised resultants at all. Our sign determination algorithm uses the Sturm–Tarski theorem,
which is significantly more efficient in practice than using resultants. On the other hand, as
it was unnecessary for our proof procedure, we have not proved in Isabelle that the real
algebraic numbers form a real closed field. In general, compared to his work, ours stresses
the practical side over the theoretical. Fundamentally, we want to build procedures to solve
non-trivial problems in practice.

Decision procedures based on Sturm’s theorem have been implemented in Isabelle and
PVS before [14,26]. Their core idea is to count the number of real roots within a certain
(bounded or unbounded) interval. Generally, they can only handle formulas involving a
single polynomial, so they are not complete for first-order formulas (unlike our tactic and the
tarski strategy in PVS).

Assia Mahboubi [22] has implemented the executable part of a general CAD procedure
in Coq, but as far as we know, the correctness proof for her implementation is still ongoing.
This is also one of the reasons for us to choose the certificate-based approach rather than
directly verifying an implementation.

There are other methods to handle nonlinear polynomial problems in theorem provers,
such as sums of squares [17], which is good for multivariate universal problems but is not
applicable when the existential quantifier arises, and interval arithmetic [18,34], which is
very efficient for some cases but is not complete. These methods and ours should be used in
a complementary way.

9 Discussion and Applications

One of our driving motivations is the integration of MetiTarski with Isabelle. MetiTarski [1]
is a first-order theorem prover for real number inequalities involving transcendental functions
such as sin, tan and exp. It can automatically prove formulas like

∀x ∈ (0, 1.25). tan(x)2 ≤ 1.75 × 10−7 + tan(1) tan(x2)
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∀x > 0.
1 − e−2x

2x(1 − e−x )2
− 1

x2
≤ 1

12

∀x ∈ (0, 1). 1.914

√
1 + x − √

1 − x

4 + √
1 + x + √

1 − x
≤ 0.01 + x

2 + √
1 − x2

.

The main idea behind MetiTarski is to approximate transcendental functions by polyno-
mial or rational function bounds, and then solve the formula by a combination of a resolution
theorem proving and an external Real Closed Field (RCF) decision procedure (QEPCAD,
Mathematica or Z3). MetiTarski is a version of Joe Hurd’s Metis prover [19], modified to
include arithmetic simplification and integration with RCF decision procedures, along with
many other refinements.

Applications of MetiTarski include verification problems arising in air traffic control [13]
and analogue circuit designs [11]. As some of the applications are safety critical, it is natural
to consider to integrateMetiTarski with an existing interactive theorem prover, whose internal
logic can be used to ensure the correctness of MetiTarski’s proofs. Besides, the automation
provided by MetiTarski is generally useful to interactive theorem provers.

MetiTarski has been integrated with the PVS theorem prover [28] as a trusted oracle
[12]. The authors state that the automation introduced by MetiTarski for closing sequents
containing real-valued functions considerably outperforms existing tactics in PVS. However,
this tactic should not be used in a certification environment, where external oracles are not
allowed.

Our eventual goal is to integrateMetiTarski into the Isabelle/HOL theorem prover. Isabelle
can verify purely logical inferences (in fact, it contains an internal copy of the Metis theorem
prover), and the third author has just formalisedmost of the bounds of transcendental functions
used by MetiTarski [30]. The primary remaining hurdle is the RCF decision procedure, and
the work presented here is the first step towards it.

Finally, let us say a bit about how our work might be generalised to multivariate prob-
lems. In doing so, we plan to continue our certificate-based approach, as we are unlikely to
implement a verified internal CAD procedure comparable in efficiency to a state-of-the-art
implementation. It is still not obvious to us where the clear separation between search and
verification should be in the multivariate case, but we have already made some progress:

• The bivariate sign determination procedure based on recursive application of the Sturm–
Tarski theorem described in our previous work [21] can be easily generalised to a
multivariate one (i.e., a procedure to decide the sign of a multivariate polynomial at
real algebraic points), which can be then used to efficiently certify purely existential
multivariate formulas over reals.

• Our recent formalisation of Cauchy’s residue theorem [20] can be used to certify a key
theorem used in general CAD: that the complex roots of a polynomial continuously
depend on its coefficients.

10 Conclusion

We have described our work of building a procedure for first-order univariate polynomial
problems in Isabelle/HOL. Compared to existing tactics among proof assistants, noticeable
features of our tactic are

• It is based on univariate cylindrical algebraic decomposition (CAD).
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• It sceptically integrates efficient external solvers in a certificate-based way, so that its
soundness solely depends on Isabelle’s logic (and code generation machinery) rather
than the external solvers.

This is made possible by certificate-based approaches to real root isolation and sign-
determination for evaluating polynomials at real algebraic points. As much of the novelty in
our work is motivated by practical efficiency considerations, we have performed experiments
comparing our procedure with another real algebraic proof procedure, the tarski method
in PVS. By making use of efficient external solvers, our procedure is shown to empirically
outperform this other method by substantial margins. We believe this adds further impetus
to the certificate-based methods for a wide variety of formal proof procedures.

Certificate-based methods can be compared on the basis of how much mathematics and
computation are required both to find and check their certificates. For example, to convert
a Positivstellensatz certificate into a HOL-Light proof of a universal theorem, Harrison’s
sums-of-squares tactic only requires simple sign-based reasoning and rational arithmetic,
while in our case, we need more mathematics (e.g., real algebraic numbers and the Sturm–
Tarski theorem) and more computation (especially for the universal case). A good certificate
design needs to balance the difficulty of the formalisation effort and verified computation
required to check the certificates with the efficiency improvements offered by offloading the
construction of the certificates to high-performance external tools.
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