17,731 research outputs found

    Enhancing Predicate Pairing with Abstraction for Relational Verification

    Full text link
    Relational verification is a technique that aims at proving properties that relate two different program fragments, or two different program runs. It has been shown that constrained Horn clauses (CHCs) can effectively be used for relational verification by applying a CHC transformation, called predicate pairing, which allows the CHC solver to infer relations among arguments of different predicates. In this paper we study how the effects of the predicate pairing transformation can be enhanced by using various abstract domains based on linear arithmetic (i.e., the domain of convex polyhedra and some of its subdomains) during the transformation. After presenting an algorithm for predicate pairing with abstraction, we report on the experiments we have performed on over a hundred relational verification problems by using various abstract domains. The experiments have been performed by using the VeriMAP transformation and verification system, together with the Parma Polyhedra Library (PPL) and the Z3 solver for CHCs.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Temporal Stream Logic: Synthesis beyond the Bools

    Full text link
    Reactive systems that operate in environments with complex data, such as mobile apps or embedded controllers with many sensors, are difficult to synthesize. Synthesis tools usually fail for such systems because the state space resulting from the discretization of the data is too large. We introduce TSL, a new temporal logic that separates control and data. We provide a CEGAR-based synthesis approach for the construction of implementations that are guaranteed to satisfy a TSL specification for all possible instantiations of the data processing functions. TSL provides an attractive trade-off for synthesis. On the one hand, synthesis from TSL, unlike synthesis from standard temporal logics, is undecidable in general. On the other hand, however, synthesis from TSL is scalable, because it is independent of the complexity of the handled data. Among other benchmarks, we have successfully synthesized a music player Android app and a controller for an autonomous vehicle in the Open Race Car Simulator (TORCS.

    The Synthesis of Logic Programs from Inductive Proofs

    Get PDF

    Path-Based Program Repair

    Full text link
    We propose a path-based approach to program repair for imperative programs. Our repair framework takes as input a faulty program, a logic specification that is refuted, and a hint where the fault may be located. An iterative abstraction refinement loop is then used to repair the program: in each iteration, the faulty program part is re-synthesized considering a symbolic counterexample, where the control-flow is kept concrete but the data-flow is symbolic. The appeal of the idea is two-fold: 1) the approach lazily considers candidate repairs and 2) the repairs are directly derived from the logic specification. In contrast to prior work, our approach is complete for programs with finitely many control-flow paths, i.e., the program is repaired if and only if it can be repaired at the specified fault location. Initial results for small programs indicate that the approach is useful for debugging programs in practice.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    Constraints on predicate invention

    Get PDF
    This chapter describes an inductive learning method that derives logic programs and invents predicates when needed. The basic idea is to form the least common anti-instance (LCA) of selected seed examples. If the LCA is too general it forms the starting poĂ­nt of a gneral-to-specific search which is guided by various constraints on argument dependencies and critical terms. A distinguishing feature of the method is its ability to introduce new predicates. Predicate invention involves three steps. First, the need for a new predicate is discovered and the arguments of the new predicate are determĂ­ned using the same constraints that guide the search. In the second step, instances of the new predicate are abductively inferred. These instances form the input for the last step where the definition of the new predicate is induced by recursively applying the method again. We also outline how such a system could be more tightly integrated with an abductive learning system

    Synthesizing Functional Reactive Programs

    Get PDF
    Functional Reactive Programming (FRP) is a paradigm that has simplified the construction of reactive programs. There are many libraries that implement incarnations of FRP, using abstractions such as Applicative, Monads, and Arrows. However, finding a good control flow, that correctly manages state and switches behaviors at the right times, still poses a major challenge to developers. An attractive alternative is specifying the behavior instead of programming it, as made possible by the recently developed logic: Temporal Stream Logic (TSL). However, it has not been explored so far how Control Flow Models (CFMs), as synthesized from TSL specifications, can be turned into executable code that is compatible with libraries building on FRP. We bridge this gap, by showing that CFMs are indeed a suitable formalism to be turned into Applicative, Monadic, and Arrowized FRP. We demonstrate the effectiveness of our translations on a real-world kitchen timer application, which we translate to a desktop application using the Arrowized FRP library Yampa, a web application using the Monadic threepenny-gui library, and to hardware using the Applicative hardware description language ClaSH.Comment: arXiv admin note: text overlap with arXiv:1712.0024
    • 

    corecore