852 research outputs found

    Eco: A Hardware-Software Co-Design for In Situ Power Measurement on Low-end IoT Systems

    Full text link
    Energy-constrained sensor nodes can adaptively optimize their energy consumption if a continuous measurement exists. This is of particular importance in scenarios of high dynamics such as energy harvesting or adaptive task scheduling. However, self-measuring of power consumption at reasonable cost and complexity is unavailable as a generic system service. In this paper, we present Eco, a hardware-software co-design enabling generic energy management on IoT nodes. Eco is tailored to devices with limited resources and thus targets most of the upcoming IoT scenarios. The proposed measurement module combines commodity components with a common system interfaces to achieve easy, flexible integration with various hardware platforms and the RIOT IoT operating system. We thoroughly evaluate and compare accuracy and overhead. Our findings indicate that our commodity design competes well with highly optimized solutions, while being significantly more versatile. We employ Eco for energy management on RIOT and validate its readiness for deployment in a five-week field trial integrated with energy harvesting

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    The politecast communication primitive for low-power wireless

    Full text link
    corecore