5,977 research outputs found

    Interactive Search and Exploration in Online Discussion Forums Using Multimodal Embeddings

    Get PDF
    In this paper we present a novel interactive multimodal learning system, which facilitates search and exploration in large networks of social multimedia users. It allows the analyst to identify and select users of interest, and to find similar users in an interactive learning setting. Our approach is based on novel multimodal representations of users, words and concepts, which we simultaneously learn by deploying a general-purpose neural embedding model. We show these representations to be useful not only for categorizing users, but also for automatically generating user and community profiles. Inspired by traditional summarization approaches, we create the profiles by selecting diverse and representative content from all available modalities, i.e. the text, image and user modality. The usefulness of the approach is evaluated using artificial actors, which simulate user behavior in a relevance feedback scenario. Multiple experiments were conducted in order to evaluate the quality of our multimodal representations, to compare different embedding strategies, and to determine the importance of different modalities. We demonstrate the capabilities of the proposed approach on two different multimedia collections originating from the violent online extremism forum Stormfront and the microblogging platform Twitter, which are particularly interesting due to the high semantic level of the discussions they feature

    Database integrated analytics using R : initial experiences with SQL-Server + R

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Most data scientists use nowadays functional or semi-functional languages like SQL, Scala or R to treat data, obtained directly from databases. Such process requires to fetch data, process it, then store again, and such process tends to be done outside the DB, in often complex data-flows. Recently, database service providers have decided to integrate “R-as-a-Service” in their DB solutions. The analytics engine is called directly from the SQL query tree, and results are returned as part of the same query. Here we show a first taste of such technology by testing the portability of our ALOJA-ML analytics framework, coded in R, to Microsoft SQL-Server 2016, one of the SQL+R solutions released recently. In this work we discuss some data-flow schemes for porting a local DB + analytics engine architecture towards Big Data, focusing specially on the new DB Integrated Analytics approach, and commenting the first experiences in usability and performance obtained from such new services and capabilities.Peer ReviewedPostprint (author's final draft

    PaPaS: A Portable, Lightweight, and Generic Framework for Parallel Parameter Studies

    Full text link
    The current landscape of scientific research is widely based on modeling and simulation, typically with complexity in the simulation's flow of execution and parameterization properties. Execution flows are not necessarily straightforward since they may need multiple processing tasks and iterations. Furthermore, parameter and performance studies are common approaches used to characterize a simulation, often requiring traversal of a large parameter space. High-performance computers offer practical resources at the expense of users handling the setup, submission, and management of jobs. This work presents the design of PaPaS, a portable, lightweight, and generic workflow framework for conducting parallel parameter and performance studies. Workflows are defined using parameter files based on keyword-value pairs syntax, thus removing from the user the overhead of creating complex scripts to manage the workflow. A parameter set consists of any combination of environment variables, files, partial file contents, and command line arguments. PaPaS is being developed in Python 3 with support for distributed parallelization using SSH, batch systems, and C++ MPI. The PaPaS framework will run as user processes, and can be used in single/multi-node and multi-tenant computing systems. An example simulation using the BehaviorSpace tool from NetLogo and a matrix multiply using OpenMP are presented as parameter and performance studies, respectively. The results demonstrate that the PaPaS framework offers a simple method for defining and managing parameter studies, while increasing resource utilization.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    A visual Analytics System for Optimizing Communications in Massively Parallel Applications

    Get PDF
    Current and future supercomputers have tens of thousands of compute nodes interconnected with high-dimensional networks and complex network topologies for improved performance. Application developers are required to write scalable parallel programs in order to achieve high throughput on these machines. Application performance is largely determined by efficient inter-process communication. A common way to analyze and optimize performance is through profiling parallel codes to identify communication bottlenecks. However, understanding gigabytes of profile data is not a trivial task. In this paper, we present a visual analytics system for identifying the scalability bottlenecks and improving the communication efficiency of massively parallel applications. Visualization methods used in this system are designed to comprehend large-scale and varied communication patterns on thousands of nodes in complex networks such as the 5D torus and the dragonfly. We also present efficient rerouting and remapping algorithms that can be coupled with our interactive visual analytics design for performance optimization. We demonstrate the utility of our system with several case studies using three benchmark applications on two leading supercomputers. The mapping suggestion from our system led to 38% improvement in hop-bytes for MiniAMR application on 4,096 MPI processes.This research has been sponsored in part by the U.S. National Science Foundation through grant IIS-1320229, and the U.S. Department of Energy through grants DE-SC0012610 and DE-SC0014917. This research has been funded in part and used resources of the Argonne Leadership Computing Facility at Argonne National Lab- oratory, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-06CH11357. This work was supported in part by the DOE Office of Science, ASCR, under award numbers 57L38, 57L32, 57L11, 57K50, and 508050

    BigDataBench: a Big Data Benchmark Suite from Internet Services

    Full text link
    As architecture, systems, and data management communities pay greater attention to innovative big data systems and architectures, the pressure of benchmarking and evaluating these systems rises. Considering the broad use of big data systems, big data benchmarks must include diversity of data and workloads. Most of the state-of-the-art big data benchmarking efforts target evaluating specific types of applications or system software stacks, and hence they are not qualified for serving the purposes mentioned above. This paper presents our joint research efforts on this issue with several industrial partners. Our big data benchmark suite BigDataBench not only covers broad application scenarios, but also includes diverse and representative data sets. BigDataBench is publicly available from http://prof.ict.ac.cn/BigDataBench . Also, we comprehensively characterize 19 big data workloads included in BigDataBench with varying data inputs. On a typical state-of-practice processor, Intel Xeon E5645, we have the following observations: First, in comparison with the traditional benchmarks: including PARSEC, HPCC, and SPECCPU, big data applications have very low operation intensity; Second, the volume of data input has non-negligible impact on micro-architecture characteristics, which may impose challenges for simulation-based big data architecture research; Last but not least, corroborating the observations in CloudSuite and DCBench (which use smaller data inputs), we find that the numbers of L1 instruction cache misses per 1000 instructions of the big data applications are higher than in the traditional benchmarks; also, we find that L3 caches are effective for the big data applications, corroborating the observation in DCBench.Comment: 12 pages, 6 figures, The 20th IEEE International Symposium On High Performance Computer Architecture (HPCA-2014), February 15-19, 2014, Orlando, Florida, US
    corecore