
Database Integrated Analytics using R: Initial
Experiences with SQL-Server + R

Josep Ll. Berral and Nicolas Poggi
Barcelona Supercomputing Center (BSC)

Universitat Politècnica de Catalunya (BarcelonaTech)
Barcelona, Spain

Abstract—Most data scientists use nowadays functional or
semi-functional languages like SQL, Scala or R to treat data,
obtained directly from databases. Such process requires to fetch
data, process it, then store again, and such process tends to
be done outside the DB, in often complex data-flows. Recently,
database service providers have decided to integrate “R-as-a-
Service” in their DB solutions. The analytics engine is called
directly from the SQL query tree, and results are returned as
part of the same query. Here we show a first taste of such
technology by testing the portability of our ALOJA-ML analytics
framework, coded in R, to Microsoft SQL-Server 2016, one of
the SQL+R solutions released recently. In this work we discuss
some data-flow schemes for porting a local DB + analytics engine
architecture towards Big Data, focusing specially on the new
DB Integrated Analytics approach, and commenting the first
experiences in usability and performance obtained from such
new services and capabilities.

I. INTRODUCTION

Current data mining methodologies, techniques and algo-
rithms are based in heavy data browsing, slicing and process-
ing. For data scientists, also users of analytics, the capability
of defining the data to be retrieved and the operations to be
applied over this data in an easy way is essential. This is the
reason why functional languages like SQL, Scala or R are so
popular in such fields as, although these languages allow high
level programming, they free the user from programming the
infrastructure for accessing and browsing data.

The usual trend when processing data is to fetch the data
from the source or storage (file system or relational database),
bring it into a local environment (memory, distributed workers,
...), treat it, and then store back the results. In such schema
functional language applications are used to retrieve and slice
the data, while imperative language applications are used to
process the data and manage the data-flow between systems.
In most languages and frameworks, database connection pro-
tocols like ODBC or JDBC are available to enhance this data-
flow, allowing applications to directly retrieve data from DBs.
And although most SQL-based DB services allow user-written
procedures and functions, these do not include a high variety
of primitive functions or operators.

The arrival of the Big Data favored distributed frameworks
like Apache Hadoop and Apache Spark, where the data is
distributed “in the Cloud” and the data processing can also be
distributed where the data is placed, then results are joined
and aggregated. Such technologies have the advantage of
distributed computing, but when the schema for accessing data

and using it is still the same, just that the data distribution is
transparent to the user. Still, the user is responsible of adapting
any analytics to a Map-Reduce schema, and be responsible of
the data infrastructure.

Recently, companies like Microsoft, IBM or Cisco,
providers of Analytics as a Service platforms, put special
effort into complementing their solutions by adding script-
ing mechanisms into their DB engines, allowing to embed
analytics mechanisms into the same DB environment. All of
them selected R [17] as a language and analytics engine, a
free and open-source statistical oriented language and engine,
embraced by the data mining community since long time ago.
The current paradigm of “Fetch from DB, Process, Dump to
DB” is shifted towards an “In-DB Processing” schema, so the
operations to be done on the selected data are provided by
the same DB procedures catalog. All the computation remains
inside the DB service, so the daily user can proceed by simply
querying the DB in a SQL style. New R-based procedures,
built-in or user created by invoking R scripts and libraries, are
executed as regular operations inside the query execution tree.

The idea of such integration is that, not only this processing
will be more usable by querying the DB, where the data is
managed and distributed, but also will reduce the overhead
of the data pipe-line, as everything will remain inside a
single data framework. Further, for continuous data processing,
analytics procedures and functions can be directly called from
triggers when data is continuously introduced or modified.

As a case of use of such approach, in this paper we present
some experiences on porting the ALOJA framework [13] to
the recently released SQL-Server 2016, incorporating this R-
Service functionality. The ALOJA-ML framework is a col-
lection of predictive analytics functions (machine learning
and data mining), written in R, originally purposed for mod-
eling and prediction High Performance Computing (HPC)
benchmarking workloads as part of the ALOJA Project [16],
deployed to be called after retrieving data from a MySQL
database. Such project collects traces and profiling of Big
Data framework technologies, and analyzing this data requires
predictive analytics. These procedures are deployed in R, and
communicating the framework with the database and R engine
results in a complex architecture, with a fragile data-pipeline
and susceptible to failures.

In this work we present how we could adapt our current
data-processing approach to a more Big-Data oriented archi-

tecture, and how we tested using the ALOJA data-set [12], as
an example and as a review from the user’s point of view.

After testing the Microsoft version of SQL+R services [10],
we saw that the major complication, far away of deploying
the service, is to build the SQL wrapping procedures for the
R scripts to be executed. When reusing or porting already
existing code or R applications, the wrapper just has to source
(R function for “import”) the original code and its libraries,
and execute the corresponding functions (plus bridging the
parameters and the return of this function). Current services
are prepared to transform 2 dimensional R Data Frames into
tables, as a result of such procedures. Aside of Microsoft
services, we took a look into Cisco ParStream [6], displaying
a very similar approach, differing on the way of instantiating
the R scripts through R file calls instead of direct scripting.
It remains for the future work to test and compare the per-
formances among platforms, also to include some experiences
with IBM PureData Services [7] and any other new platform
providing such services.

This article is structured as follows: Section II presents
the current state-of-art and recent approaches used when
processing data from databases. Section III explains the current
and new data-flow paradigm, and required changes. Section IV
shows some code porting examples from our native R scripts to
Microsoft SQL Server. Section V provides comments and de-
tails on some experiments on running the ALOJA framework
in the new architecture. Finally, section VI summarizes this
current work and presents the conclusions and future work.

II. STATE OF THE ART

Current efforts on systems processing Big Data are mostly
focused on building and improving distributed systems. Plat-
forms like Apache Hadoop [1] and Apache Spark [4], with
all their “satellite” technologies, are on the rise on Big Data
processing environments. Those platforms, although being
originally designed towards Java or Python applications, the
significant weight of the data mining community using R,
Scala or using SQL interfaces, encouraged the platforms strate-
gists over the years to include interfaces and methodologies for
using such languages. Revolution Analytics published in 2011
RHadoop [9], a set of packages for R users to launch Hadoop
tasks. Such packages included HDFS [14] and HBase [2] han-
dlers, with Map-Reduce and data processing function libraries
adapted for Hadoop. This way, R scripts could dispatch par-
allelizable functions (e.g. R “apply” functions) to be executed
in distributed worker computing machines.

The Apache Spark platform, developed by the Berkeley’s
AMPlab [11] and Databricks [5] and released in 2014, focuses
on four main applied data science topics: graph processing,
machine learning, data streaming, and relational algebraic
queries (SQL). For these, Spark is divided in four big pack-
ages: GraphX, MLlib, SparkStream, and SparkSQL. SparkSQL
provides a library for treating data through SQL syntax or
through relational algebraic functions. Also recently, a R
scripting interface has been added to the initial Java, Python
and Scala interfaces, through the SparkR package, providing

the Spark based parallelism functions, Map-Reduce and HBase
or Hive [3] handlers. This way, R users can connect to
Spark deployments and process data frames in a Map-Reduce
manner, the same way they could do with RHadoop or using
other languages.

Being able to move the processing towards the database
side becomes a challenge, but allows to integrate analytics
into the same data management environment, letting the same
framework that receives and stores data to process it, in the
way it is configured (local, distributed...). For this purpose,
companies providing database platforms and services put effort
in adding data processing engines as integrated components to
their solutions. Microsoft recently acquired Revolution Analyt-
ics and its R engine, re-branded as R-Server [8], and connected
to the Microsoft SQL-Server 2016 release [10]. IBM also
released their platform Pure Data Systems for Analytics [7],
providing database services including the vanilla R engine
from the Comprehensive R Archive Network [17]. Also Cisco
recently acquired ParStream [6], a streaming database product
incorporating user defined functions, programmable as shared
object libraries in C++ or as external scripts in R.

Here we describe our first approach to integrate our R-based
analytics engine into a SQL+R platform, the Microsoft SQL-
Server 2016, primarily looking at the user experience, and
discussing bout cases of use where one architecture would be
preferred over others.

III. DATA-FLOW ARCHITECTURES

Here we show three basic schemes of data processing,
the local ad-hoc schema of pull-process-push data, the new
distributed schemes for Hadoop and Spark, and the “In-
DataBase” approach using the DB integrated analytics ser-
vices. Point out that there is not an universal schema that
works for each situation, and each one serves better or
worse depending on the situation. As an example we put the
case of the ALOJA-ML framework as an example of such
architectures, how it currently operates, the problematic, and
how it would be adapted to new approaches.

A. Local Environments

In architectures where the data and processing capacity is in
the same location, having data-sets stored in local file systems
or direct access DBs (local or remote databases where the
user or the application can access to retrieve or put data).
When an analytics application wants to process data, it can
access the DB to fetch the required data, store locally and
then pass to the analytics engine. Results are collected by
the application and pushed again to the DB, if needed. This
is a classical schema before having distributed systems with
distributed databases, or for systems where the processing is
not considered big enough to build a distributed computing-
power environment, or when the process to be applied on data
cannot be distributed.

For systems where the analytics application is just a user
of the data, this schema might be the corresponding one, as
the application fetches the data it is granted to view, then

do whatever it wants with it. Also for applications where
computation does not require select big amounts of data, as
the data required is a small fraction of the total Big Data, it is
affordable to fetch the slice of data and process it locally. Also
on systems where using libraries like snowfall [X], letting the
user to tune the parallelism of R functions, can be deployed
locally up to a point where this distribution requires heavier
mechanisms like Hadoop or Spark.

There are mechanisms and protocols, like ODBC or JDBC
(e.g. RODBC library for R), allowing applications to access
directly to DBs and fetch data without passing through the file
system, but through the application memory space. This is, in
case that the analytics application has granted direct access to
the DB and understands the returning format. Figure 1 shows
both archetypical local schemes.

Fig. 1. Schema of local execution approaches, passing data through the File
System or ODBC mechanisms

In the first case of Figure 1 we suppose an scenario where
the engine has no direct access to DB, as everything that
goes into analytics is triggered by the base application. Data
is retrieved and pre-processed, then piped to the analytics
engine through the file system (files, pipes, ...). This requires
coordination between application and engine, in order to
communicate the data properly. Such scenarios can happen
when the DB, the application and the engine do not belong
to the same organization, or when they belong to services
from different providers. Also it can happen when security
issues arise, as the analytics can be provided by a not-so-
trusted provider, and data must be anonymized before exiting

the DB.
Also, if the DB and analytics engine are provided by the

same service provider, there will be means to communicate the
storage with the engine in an ODBC or other way, allowing
to fetch the data, process, and then return the results to the
DB. As an example, the Microsoft Azure-ML services [15]
allow the connection of its machine learning components with
the Azure storage service, also the inclusion of R code as
part of user-defined components. In such service, the machine
learning operations do not happen on the storage service, but
data is pulled into the engine and then processed.

At this moment, the ALOJA Project, consists of a web user
interface (front-end and back-end), a MySQL database and
the R engine for analytics, used this schema of data pipe-line.
The web interface provided the user the requested data from
the ALOJA database, and then displayed in the front-end. If
analytics were required, the back-end dumped the data to be
treated into the file system, and then started the R engine.
Results were collected by the back-end and displayed (also
stored in cache). As most of the information passed through
user filters, this data pipe-lining was preferred over the direct
connection of the scripts with the DB. Also this maintained the
engine independent of the DB queries in constant development
at the main framework.

Next steps for the project are planned towards incorporating
a version of the required analytics into the DB, so the back-
end of the platform can query any of the provided analytics,
coded as generic for any kind of input data, as a single SQL
query.

B. Distributed Environments

An alternative architecture for the project would be to
upload the data into a Distributed Database (DDB), thinking
on expanding the ALOJA database towards Big Data (we still
have Terabytes of data to be unpacked into the DB and to be
analyzed at this time). The storage of the data could be done
using Hive or HBase technologies, also the analytics could be
adapted towards Hadoop or Spark. For Hadoop, the package
RHadoop could handle the analytics, while the SparkSQL +
SparkR packages could do the same for Spark. Processing
the analytics could be done on a distributed system with
worker nodes, as most of the analytics in our platform can be
parallelized. Further, Hadoop and Spark have machine learning
libraries (Mahout and MLlib) that could be used as native
instead of some functionalities of our ALOJA-ML framework.
Figure 2 shows the execution schema of this approach.

Such approach would concentrate all the data retrieval
and processing in a distributed system, not necessarily near
the application but providing parallelism and agility on data
browsing, slicing and processing. However, this requires a
complex set-up for all the involved services and machines,
and the adaption of the analytics towards parallelism in a
different level than when using snowfall or other packages.
SparkR provides a Distributed Data-Frame structure, with
similar properties than regular R data-frames, but due to the
distributed property, some classic operations are not available

Fig. 2. Schema of distributed execution approach, with Distributed Databases
or File Systems

or must be performed in a different way (e.g. column binding,
aggregates like “mean”, “count”...).

This option would be chosen at that point where data is
large enough to be dealt with a single system, considering that
DB managers do not provide means to distribute and retrieve
data. Also, like in the previous approach, the data pipe-line
passes through calling the analytics engine to produce the
queries and invoke (in a Map-Reduce manner) the analytics
when parallelizable, or collect locally data to apply the non-
parallelizable analytics. The price to be paid would be the set-
up of the platform, and the proper adjustment of the analytics
towards a Map-Reduce schema.

C. Integrated Analytics

The second alternative to the local analytics schema is to
incorporate those functions to the DB services. At this point,
the DB can offer Analytics as a Service, as users can query
for analytics directly to the DB in a SQL manner, and data
will be directly retrieved, processed and stored by the same
framework, avoiding the user to plan a full data pipe-line.

As the presented services and products seem to admit R
scripts and programs directly, no adaption of the R code
is required. The effort must be put in coding the wrapping
procedures for being called from a SQL interface. Figure 3
shows the basic data-flow for this option.

Fig. 3. Schema of “In-DB” execution approach

The advantages of such approach are that 1) analytics, data
and data management are integrated in the same software

package, and the only deployment and configuration is of
the database; 2) the management of distributed data in Big
Data deployments will provided by the same DB software
(whether this is implemented as part of the service!), and the
user doesn’t need to implement Map-Reduce functions but data
can be aggregated in the same SQL query; 3) simple DB users
can invoke the analytics though a SQL query, also analytics
can be programmed generically to be applied with any required
input SQL query result; 4) DBs providing triggers can produce
Continuous Analytic Queries each time data is introduced or
modified.

This option still has issues to be managed, such as the capac-
ity of optimization and parallelism of the embedded scripts. In
the case of the Microsoft R Service, any R code can be inserted
inside a procedure, without any apparent optimization to be
applied as any script is directly sent to a external R sub-service
managed by the principal DB service. Such R sub-service
promises to apply multi-threading in Enterprise editions, as the
classic R engine is single-thread, and multi-threading could
be applied to vectorization functions like “apply”, without
having to load the previously mentioned snowfall (loadable
as the script runs on a compatible R engine). Also, comparing
this approach to the distributed computing system, if the
service supports “partitioning” of data according to determined
columns and values, SQL queries could be distributed in a
cluster of machines (not as replication, but as distribution),
and aggregated after that.

IV. ADAPTING AND EMBEDDING CODE

According to the SQL-Server published documentation and
API, the principal way to introduce external user-defined
scripts is to wrap the R code inside a Procedure. The SQL-
Server procedures admit the script, that like any “Rscript” can
source external R files and load libraries (previously copied
into the corresponding R library path set up by the Microsoft
R Service), also admit the parameters to be bridged towards
the script, and also admit SQL queries to be executed previous
to start the script for filling input data-frames. The procedure
also defines the return values, in the form of data-frames as
tables, values or a tuple of values.

When the wrapping procedure is called, input SQL queries
are executed and passed as input data-frame parameters, direct
parameters are also passed to the script, then the script is
executed in the R engine as it would do a “Rscript” or a script
dumped into the R command line interface. The variables
mapped as outputs are returned from the procedure into the
invoking SQL query.

Figure 4 shows an example of calling ALOJA-ML functions
in charge of learning a linear model from the ALOJA data-
set, read from a file while indicating the input and output
variables; also calling a function to predict a data-set using
the previously created model. The training process creates a
model and its hash ID, then the prediction process applies the
model to all the testing data-set. In the current ALOJA data
pipe-line, “ds” should be retrieved from the DB (to a file to
be read, or directly to a variable if RODBC is used). Then

source("functions.r");
library(digest);

Training Process
model <- aloja_linreg(ds = read.table("aloja6.csv"), vin = c("maps","iofilebuf"), vout = "exe_time");
id_hash <- digest(x = model, algo = "md5"); # ID for storing the model in DB

Prediction Example
predictions <- aloja_predict_dataset(learned_model = model, ds = read.table("aloja6test.csv"));

Fig. 4. Example of modeling and prediction example using the ALOJA-ML libraries. Loading ALOJA-ML functions allow the code to execute “aloja linreg”
to model a linear regression, also “aloja predict dataset” to process a new data-set using a previously trained model.

the results (“model”, “id hash” and “predictions”) should be
reintroduced to the DB using again RODBC, or writing the
results into a file and the model into a serialized R object file.

Figures 5 and 6 show how this R code is wrapped as
procedure, and examples of how these procedures are invoked.
Using this schema, in the modeling procedure, “ds” would be
passed to the procedure as a SQL query, “vin” and “vout”
would be bridged parameters, and the “model” and “id hash”
would be returned as a two values (a serialized blob/string
and a string) that can be saved into a models table. The return
would be introduced into the models table. Also the prediction
procedure would admit an “id hash” for retrieving the model
(using a SQL query inside the procedure), and would return a
data-frame/table with the row IDs and the predictions.

We observed that, when preparing the embedded script, all
sources, libraries and file paths must be prepared like a Rscript
to be executed from a command line. The environment for the
script must be set-up, as it will be executed each time in a
new R session.

In the usual work-flow on ALOJA-ML tools, models (R
serialized objects) are stored in the file system, and then
uploaded in the database as binary blobs. Working directly
from the DB server allow to directly encode serialized objects
into available DB formats. Although SQL-Server includes a
“large binary” data format, we found some problems when
returning binary information from procedures (syntax not
allowing the return of such data type in tuples), thus serialized
objects can be converted to text-formats like base64 to be
stored as a “variable size character array”.

V. EXPERIMENTS AND EXPERIENCES

A. Usability and Performance

For testing the approach we used the SQL-Server 2016
Basic version, with the R Service installed and with Windows
Server 2012, from a default image available at the Azure
repositories. Being the basic service, and not the enterprise,
we assumed that R Services would not provide improvements
on multi-threading, so additional packages for such functions
are installed (snowfall). The data from the ALOJA data-set is
imported through the CSV importing tools in the SQL-Server
Manager framework, the “Visual-Studio”-like integrated de-
velopment environment (IDE) for managing the services.

Data importing displayed some problems, concerning to
data-type transformation issues, as some numeric columns
couldn’t be properly imported due to precision and very big
values, and had to be treated as varchar (thus, not treatable
as number). After making sure that the CSV data is properly
imported, the IDE allowed to perform simple queries (SE-
LECT, INSERT, UPDATE). At this point, tables for storing
pair-value entries, containing the models with their specific
ID hash as key, is created. Procedures wrapping the basic
available functions of ALOJA-ML are created, as specified
in previous section IV. After executing some example calls,
the system works as expected.

During the process of creating the wrapping procedures
we found some issues, probably non-reported bugs or system
internal limitations, like the fact that a procedure can return a
large binary type (large blob in MySQL and similar solutions),
also can return tuples of diverse kinds of data types, but it
crashed with an internal error when trying to return a tuple
of a varchar and a large binary. Workarounds were found
by converting the serialized model object (binary type) into
a base64 encoding string (varchar type), to be stored with
its ID hash key. As none information about this issue was
found in the documentation, at the day of registering these
experiences, we expect that such issues will be solved by the
development team in the future.

We initially did some tests using the modeling and pre-
diction ALOJA-ML functions over the data, and comparing
times with a local “vanilla” R setup, performance is almost
identical. This indicating that with this “basic” version, the R
Server (former R from Revolution Analytics) is still the same
at this point.

Another test done was to run the outliers classification
function of our framework. The function, explained in detail
in its corresponding work [13], compares the original output
variables with their predictions, and if the difference is k times
greater than the expected standard deviation plus modeling er-
ror, and it doesn’t have enough support from similar values on
the rest of the data-set, such data is considered an outlier. This
implies the constant reading of the data table for prediction
and for comparisons between entries. The performance results
were similar to the ones on a local execution environment,
measuring only the time spent in the function. In a HDI-
A2 instance (2 virtual core, only 1 used, 3.5GB memory),

%% Creation of the Training Procedure, wrapping the R call
CREATE PROCEDURE dbo.MLPredictTrain @inquery nvarchar(max), @varin nvarchar(max),

@varout nvarchar(max) AS
BEGIN
EXECUTE sp_execute_external_script
@language = N’R’,
@script = N’

source("functions.r");
library(digest); library(base64enc);
model <- aloja_linreg(ds = InputDataSet, vin = unlist(strsplit(vin,",")), vout = vout);
serial <- as.raw(serialize(model, NULL));
OutputDataSet <- data.frame(model = base64encode(serial),

id_hash = digest(serial, algo = "md5"));
’,
@input_data_1 = @inquery,
@input_data_1_name = N’InputDataSet’,
@output_data_1_name = N’OutputDataSet’,
@params = N’@vin nvarchar(max), @vout nvarchar(max)’,
@vin = @varin,
@vout = @varout
WITH RESULT SETS (("model" nvarchar(max), "id_hash" nvarchar(50)));
END

%% Example of creating a model and storing into the DB
INSERT INTO aloja.dbo.trained_models (model, id_hash)
EXEC dbo.MLPredictTrain @inquery = "SELECT exe_time, maps, iofilebuf FROM aloja.dbo.aloja6",

@varin = "maps,iofilebuf", @varout = "exe_time"

Fig. 5. Version of the modeling call for ALOJA-ML functions in a SQL-Server procedure. The procedure generates the data-set for “aloja linreg” from a
parametrized query, also bridges the rest of parameters into the script. It also indicates the format of the output, being a value, a tuple or a table (data frame).

%% Creation of the Predicting Procedure, wrapping the R call
CREATE PROCEDURE dbo.MLPredict @inquery nvarchar(max), @id_hash nvarchar(max) AS
BEGIN
DECLARE @modelt nvarchar(max) = (SELECT TOP 1 model FROM aloja.dbo.trained_models

WHERE id_hash = @id_hash);
EXECUTE sp_execute_external_script
@language = N’R’,
@script = N’

source("functions.r");
library(base64enc);
results <- aloja_predict_dataset(learned_model = unserialize(as.raw(base64decode(model))),

ds = InputDataSet);
OutputDataSet <- data.frame(results);

’,
@input_data_1 = @inquery,
@input_data_1_name = N’InputDataSet’,
@output_data_1_name = N’OutputDataSet’,
@params = N’@model nvarchar(max)’,
@model = @modelt;
END

%% Example of predicting a dataset from a SQL query with a previously trained model in DB
EXEC aloja.dbo.MLPredict @inquery = ’SELECT exe_time, maps, iofilebuf FROM aloja.dbo.aloja6test’,

@id_hash = ’aa0279e9d32a2858ade992ab1de8f82e’;

Fig. 6. Version of the Prediction call for ALOJA-ML functions in a SQL-Server procedure. Like the training procedure in figure 5, the procedure primarily
retrieves the data to be processed from a SQL query, and passes it with the rest of parameters into the script. Here the result is directly a table (data frame).

it took 1h:9m:56s to process the 33147 rows, selecting just 3
features. Then, as a way to improve the performance, due to
the limitations of the single-thread R Server, we loaded snow-

fall, and invoked it from the ALOJA-ML “outlier dataset”
function, on a HDI-A8 instance (8 virtual core, all used, 14GB
memory). The data-set was processed in 11m:4s, barely 1/7

of the previous time, considering the overhead of sharing data
among R processes created by snowfall, demonstrating that
despite not being a multi-threaded set-up, using the traditional
resources available on R it is possible to scale R procedures.

B. Discussion

One of the concerns on the usage of such service is, despite
and because of the capability of multi-processing using built-
in or loaded libraries, the management of the pool of R
processes. R is not just a scripting language to be embedded
on a procedure, but it is a high-level language that allows from
creating system calls to parallelizing work among networked
working nodes. Given the complexity that a R user created
function can achieve, in those cases that such procedure is
heavily requested, the R server should be able to be detached
from the SQL-server and able in dedicated HPC deployments.

The same way snowfall can be deployed for multi-threading
(also for cluster-computing), clever hacks can be created by
loading RHadoop or SparkR inside a procedure, connecting
the script with a distributed processing system. As the SQL-
server bridges tables and query results as R data frames, such
data frames can be converted to Hadoop’s Resilient Distributed
Data-sets or Spark’s Distributed Data Frames, uploaded to a
HDFS, processed, then returned to the database. This could
bring to a new architecture of SQL-Server (or equivalent
solutions) to connect to distributed processing environments,
as slave HPC workers for the database. Also an improvement
could be that the same DB-server, instead of producing input
table/data frames already returned Distributed Data Frames,
being the data base distributed into working nodes (in a
partitioning way, not a replication way). All in all, the fact
that the embedded R code is directly passed to a nearly-
independent R engine allows to do whatever a data scientist
can do with a typical R session.

VI. SUMMARY AND CONCLUSIONS

The incorporation of R, the semi-functional programming
statistical language, as an embedded analytics service into
databases will suppose an improvement on the ease and
usability of analytics over any kind of data, from regular to
big amounts (Big Data). The capability of data scientists to
introduce their analytics functions as a procedure in databases,
avoiding complex data-flows from the DB to analytics engines,
allow users and experts a quick tool for treating data in-situ
and continuously.

This study discussed some different architectures for data
processing, involving fetching data from DBs, distributing data
and processing power, and embedding the data process into the
DB. All of this using the ALOJA-ML framework as reference,
a framework written in R dedicated to model, predict and
classify data from Hadoop executions, stored as the ALOJA
data-set. The shown examples and cases of use correspond
to the port of the current ALOJA architecture towards SQL-
Server 2016, integrating R Services.

After testing the analytics functions after the porting into
an SQL database, we observed that the major effort for this

porting are in the wrapping SQL structures for incorporating
the R calls into the DB, without modifying the original R code.
As performance results similar than R standalone distributions,
the advantages come from the input data retrieving and storing.

In future work we plan to test the system more in-depth, and
also compare different SQL+R solutions, as companies offer-
ing DB products have started putting efforts into integrating
R engines in their DB platforms. As this study focused more
in an initial hands-on with this new technology, future studies
will focus more on comparing performance, also against other
architectures for processing Big Data.

ACKNOWLEDGMENTS

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 639595).

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org (Aug 2016).
[2] Apache HBase. https://hbase.apache.org/ (Aug 2016).
[3] Apache Hive. https://hive.apache.org/ (Aug 2016).
[4] Apache Spark. https://spark.apache.org/ (Aug 2016).
[5] Databricks inc. https://databricks.com/ (Aug 2016).
[6] ParStream. Cisco corporation. http://www.cisco.com/c/en/us/products/

analytics-automation-software/parstream/index.html (Aug 2016).
[7] PureData Systems for Analytics. IBM corporation. https://www-01.ibm.

com/software/data/puredata/analytics/ (Aug 2016).
[8] R-Server. Microsoft corporation. https://www.microsoft.com/en-us/

cloud-platform/r-server (Aug 2016).
[9] RHadoop. Revolution Analytics. https://github.com/

RevolutionAnalytics/RHadoop/wiki (Aug 2016).
[10] SQL-Server 2016. Microsoft corporation. https://www.microsoft.com/

en-us/cloud-platform/sql-server (Aug 2016).
[11] UC Berkeley, AMPlab. https://amplab.cs.berkeley.edu/ (Aug 2016).
[12] Barcelona Supercomputing Center. ALOJA home page. http://aloja.bsc.

es/ (Aug 2016).
[13] J. L. Berral, N. Poggi, D. Carrera, A. Call, R. Reinauer, and D. Green.

ALOJA-ML: A framework for automating characterization and knowl-
edge discovery in hadoop deployments. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 1701–1710,
2015.

[14] D. Borthakur. The Hadoop Distributed File System: Architecture and
Design.
http://hadoop.apache.org/docs/r0.18.0/hdfs design.pdf. The Apache
Software Foundation, 2007.

[15] Microsoft Corporation. Azure 4 Research. http://research.microsoft.
com/en-us/projects/azure/default.aspx (Jan 2016).

[16] N. Poggi, J. L. Berral, D. Carrera, A. Call, F. Gagliardi, R. Reinauer,
N. Vujic, D. Green, and J. A. Blakeley. From performance profiling to
predictive analytics while evaluating hadoop cost-efficiency in ALOJA.
In 2015 IEEE International Conference on Big Data, Big Data 2015,
Santa Clara, CA, USA, October 29 - November 1, 2015, pages 1220–
1229, 2015.

[17] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2014.

