9 research outputs found

    Producing efficient error-bounded solutions for transition independent decentralized MDPs

    Get PDF
    pages 539-546International audienceThere has been substantial progress on algorithms for single-agent sequential decision making problems represented as partially observable Markov decision processes (POMDPs). A number of efficient algorithms for solving POMDPs share two desirable properties: error-bounds and fast convergence rates. Despite significant efforts, no algorithms for solving decentralized POMDPs benefit from these properties, leading to either poor solution quality or limited scalability. This paper presents the first approach for solving transition independent decentralized Markov decision processes (MDPs), that inherits these properties. Two related algorithms illustrate this approach. The first recasts the original problem as a finite-horizon deterministic and completely observable Markov decision process. In this form, the original problem is solved by combining heuristic search with constraint optimization to quickly converge into a near-optimal policy. This algorithm also provides the foundation for the first algorithm for solving infinite-horizon transition independent decentralized MDPs. We demonstrate that both methods outperform state-of-the-art algorithms by multiple orders of magnitude, and for infinite-horizon decentralized MDPs, the algorithm is able to construct more concise policies by searching cyclic policy graphs

    Influence-Optimistic Local Values for Multiagent Planning --- Extended Version

    Get PDF
    Recent years have seen the development of methods for multiagent planning under uncertainty that scale to tens or even hundreds of agents. However, most of these methods either make restrictive assumptions on the problem domain, or provide approximate solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such upper bounds for problems with non-factored value functions. To allow for meaningful benchmarking through measurable quality guarantees on a very general class of problems, this paper introduces a family of influence-optimistic upper bounds for factored decentralized partially observable Markov decision processes (Dec-POMDPs) that do not have factored value functions. Intuitively, we derive bounds on very large multiagent planning problems by subdividing them in sub-problems, and at each of these sub-problems making optimistic assumptions with respect to the influence that will be exerted by the rest of the system. We numerically compare the different upper bounds and demonstrate how we can achieve a non-trivial guarantee that a heuristic solution for problems with hundreds of agents is close to optimal. Furthermore, we provide evidence that the upper bounds may improve the effectiveness of heuristic influence search, and discuss further potential applications to multiagent planning.Comment: Long version of IJCAI 2015 paper (and extended abstract at AAMAS 2015

    RĂ©solution exacte des Dec-POMDPs comme des MDPs continus

    Get PDF
    National audienceRésoudre optimalement des processus décisionnels de Markov partiellement observables et décentralisés (Dec-POMDPs) est un problème combinatoire difficile. Les algorithmes actuels cherchent pour chaque agent à travers l'espace complet des politiques sur les historiques. A cause de la croissance doublement exponentielle de cet espace quand l'horizon de planification croît, ces méthodes deviennent rapidement insolubles. Toutefois, dans des problèmes réels, calculer des politiques sur l'espace des historiques complet est souvent inutile. L'extraction des informations pertinentes d'un historique permet de réduire le nombre d'historiques utiles. Nous montrons qu'en transformant un Dec-POMDP en un MDP continu, nous sommes capables de trouver et exploiter ces représentations à faible dimensionalité. En utilisant cette nouvelle transformation, nous pouvons appliquer des techniques efficaces pour la résolution de POMDPs et de MDPs continus. En combinant un algorithme de recherche générique et une réduction de la dimensionalité fondée sur la sélection de caractéristiques, nous introduisons une nouvelle approche pour résoudre de manière optimale des problèmes avec des horizons de planification significativement plus grands que les méthodes antérieures

    Producing efficient error-bounded solutions for transition independent decentralized MDPs

    Get PDF
    pages 539-546International audienceThere has been substantial progress on algorithms for single-agent sequential decision making problems represented as partially observable Markov decision processes (POMDPs). A number of efficient algorithms for solving POMDPs share two desirable properties: error-bounds and fast convergence rates. Despite significant efforts, no algorithms for solving decentralized POMDPs benefit from these properties, leading to either poor solution quality or limited scalability. This paper presents the first approach for solving transition independent decentralized Markov decision processes (MDPs), that inherits these properties. Two related algorithms illustrate this approach. The first recasts the original problem as a finite-horizon deterministic and completely observable Markov decision process. In this form, the original problem is solved by combining heuristic search with constraint optimization to quickly converge into a near-optimal policy. This algorithm also provides the foundation for the first algorithm for solving infinite-horizon transition independent decentralized MDPs. We demonstrate that both methods outperform state-of-the-art algorithms by multiple orders of magnitude, and for infinite-horizon decentralized MDPs, the algorithm is able to construct more concise policies by searching cyclic policy graphs

    Probabilistic Inference Techniques for Scalable Multiagent Decision Making

    Get PDF
    Decentralized POMDPs provide an expressive framework for multiagent sequential decision making. However, the complexity of these models—NEXP-Complete even for two agents—has limited their scalability. We present a promising new class of approxima-tion algorithms by developing novel connections between multiagent planning and machine learning. We show how the multiagent planning problem can be reformulated as inference in a mixture of dynamic Bayesian networks (DBNs). This planning-as-inference approach paves the way for the application of efficient inference techniques in DBNs to multiagent decision making. To further improve scalability, we identify certain conditions that are sufficient to extend the approach to multiagent systems with dozens of agents. Specifically, we show that the necessary inference within the expectation-maximization framework can be decomposed into processes that often involve a small subset of agents, thereby facilitating scalability. We further show that a number of existing multiagent planning models satisfy these conditions. Experiments on large planning benchmarks confirm the benefits of our approach in terms of runtime and scalability with respect to existing techniques

    An extended study on addressing defender teamwork while accounting for uncertainty in attacker defender games using iterative Dec-MDPs

    Get PDF
    Multi-agent teamwork and defender-attacker security games are two areas that are currently receiving significant attention within multi-agent systems research. Unfortunately, despite the need for effective teamwork among multiple defenders, little has been done to harness the teamwork 1 research in security games. The problem that this paper seeks to solve is the coordination of decentralized defender agents in the presence of uncer-tainty while securing targets against an observing adversary. To address this problem, we offer the following novel contributions in this paper: (i) New model of security games with defender teams that coordinate under uncertainty; (ii) New algorithm based on column generation that uti-lizes Decentralized Markov Decision Processes (Dec-MDPs) to generate defender strategies that incorporate uncertainty; (iii) New techniques to handle global events (when one or more agents may leave the system) during defender execution; (iv) Heuristics that help scale up in the num-ber of targets and agents to handle real-world scenarios; (v) Exploration of the robustness of randomized pure strategies. The paper opens the door to a potentially new area combining computational game theory and multi-agent teamwork.

    Optimally solving Dec-POMDPs as Continuous-State MDPs: Theory and Algorithms

    Get PDF
    Decentralized partially observable Markov decision processes (Dec-POMDPs) provide a general model for decision-making under uncertainty in cooperative decentralized settings, but are difficult to solve optimally (NEXP-Complete). As a new way of solving these problems, we introduce the idea of transforming a Dec-POMDP into a continuous-state deterministic MDP with a piecewise-linear and convex value function. This approach makes use of the fact that planning can be accomplished in a centralized offline manner, while execution can still be distributed. This new Dec-POMDP formulation, which we call an occupancy MDP, allows powerful POMDP and continuous-state MDP methods to be used for the first time. When the curse of dimensionality becomes too prohibitive, we refine this basic approach and present ways to combine heuristic search and compact representations that exploit the structure present in multi-agent domains, without losing the ability to eventually converge to an optimal solution. In particular, we introduce feature-based heuristic search that relies on feature-based compact representations, point-based updates and efficient action selection. A theoretical analysis demonstrates that our feature-based heuristic search algorithms terminate in finite time with an optimal solution. We include an extensive empirical analysis using well known benchmarks, thereby demonstrating our approach provides significant scalability improvements compared to the state of the art.Les processus de décision markoviens partiellement observables décentralisés (Dec-POMDP) fournissent un modèle général pour la prise de décision dans l'incertain dans des cadres coopératifs décentralisés. En guise de nouvelle approche de résolution de ces problèmes, nous introduisons l'idée de transformer un Dec-POMDP en un MDP déterministe à espace d'états continu dont la fonction de valeur est linéaire par morceaux et convexe. Cette approche exploite le fait que la planification peut être effectuée d'une manière centralisée hors ligne, alors que l'exécution peut toujours être distribuée. Cette nouvelle formulation des Dec-POMDP, que nous appelons un occupancy MDP, permet pour la première fois d'employer de puissantes méthodes de résolution de POMDP et MDP à états continus. La malédiction de la dimensionalité devenant prohibitive, nous raffinons cette approche basique et présentons des façons de combiner la recherche heuristique et des représentations compactes qui exploitent la structure présente dans les domaines multi-agents, sans perdre la capacité de converger à terme vers une solution optimale. En particulier, nous introduisons une recherche heuristique qui repose sur des représentations compactes fondées sur des features, sur des mises-à-jour à base de points, et une sélection d'action efficace. Une analyse théorique démontre que nos algorithmes de recherche heuristique fondés sur des features se terminent en temps fini avec une solution optimale. Nous incluons une analyse empirique extensive utilisant des bancs d'essai bien connus, démontrant ainsi que notre approche améliore significativement le passage à l'échelle en comparaison de l'état de l'art

    Stochastic Optimization of Energy Harvesting Wireless Communication Networks

    Get PDF
    Energy harvesting from environmental energy sources (e.g., sunlight) or from man-made sources (e.g., RF energy) has been a game-changing paradigm, which enabled the possibility of making the devices in the Internet of Things or wireless sensor networks operate autonomously and with high performance for years or even decades without human intervention. However, an energy harvesting system must be correctly designed to achieve such a goal and therefore the energy management problem has arisen and become a critical aspect to consider in modern wireless networks. In particular, in addition to the hardware (e.g., in terms of circuitry design) and application point of views (e.g., sensor deployment), also the communication protocol perspective must be explicitly taken into account; indeed, the use of the wireless communication interface may play a dominant role in the energy consumption of the devices, and thus must be correctly designed and optimized. This analysis represents the focus of this thesis. Energy harvesting for wireless system has been a very active research topic in the past decade. However, there are still many aspects that have been neglected or not completely analyzed in the literature so far. Our goal is to address and solve some of these new problems using a common stochastic optimization setup based on dynamic programming. In particular, we formulate both the centralized and decentralized optimization problems in an energy harvesting network with multiple devices, and discuss the interrelations between these two schemes; we study the combination of environmental energy harvesting and wireless energy transfer to improve the transmission rate of the network and achieve a balanced situation; we investigate the long-term optimization problem in wireless powered communication networks, in which the receiver supplies wireless energy to the terminal nodes; we deal with the energy storage inefficiencies of the energy harvesting devices, and show that traditional policies may be strongly suboptimal in this context; finally, we investigate how it is possible to increase secrecy in a wireless link where a third malicious party eavesdrops the information transmitted by an energy harvesting node
    corecore