2,493 research outputs found

    Evolution of central pattern generators for the control of a five-link bipedal walking mechanism

    Get PDF
    Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating individual networks for a given task are lacking. This study presents an approach where the connectivity and oscillatory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have been observed to succeed in fitness simulations during evolution.Comment: 11 pages, 9 figures; substantial revision of content, organization, and quantitative result

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    The transition between stochastic and deterministic behavior in an excitable gene circuit

    Get PDF
    We explore the connection between a stochastic simulation model and an ordinary differential equations (ODEs) model of the dynamics of an excitable gene circuit that exhibits noise-induced oscillations. Near a bifurcation point in the ODE model, the stochastic simulation model yields behavior dramatically different from that predicted by the ODE model. We analyze how that behavior depends on the gene copy number and find very slow convergence to the large number limit near the bifurcation point. The implications for understanding the dynamics of gene circuits and other birth-death dynamical systems with small numbers of constituents are discussed.Comment: PLoS ONE: Research Article, published 11 Apr 201

    Mammalian Brain As a Network of Networks

    Get PDF
    Acknowledgements AZ, SG and AL acknowledge support from the Russian Science Foundation (16-12-00077). Authors thank T. Kuznetsova for Fig. 6.Peer reviewedPublisher PD

    Design Principles of Biological Oscillators through Optimization: Forward and Reverse Analysis

    Get PDF
    26 páginas, 10 figuras, 1 tabla.-- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedFrom cyanobacteria to human, sustained oscillations coordinate important biological functions. Although much has been learned concerning the sophisticated molecular mechanisms underlying biological oscillators, design principles linking structure and functional behavior are not yet fully understood. Here we explore design principles of biological oscillators from a multiobjective optimization perspective, taking into account the trade-offs between conflicting performance goals or demands. We develop a comprehensive tool for automated design of oscillators, based on multicriteria global optimization that allows two modes: (i) the automatic design (forward problem) and (ii) the inference of design principles (reverse analysis problem). From the perspective of synthetic biology, the forward mode allows the solution of design problems that mimic some of the desirable properties appearing in natural oscillators. The reverse analysis mode facilitates a systematic exploration of the design space based on Pareto optimality concepts. The method is illustrated with two case studies: the automatic design of synthetic oscillators from a library of biological parts, and the exploration of design principles in 3-gene oscillatory systemsThis work was supported by MINECO (and the European Regional Development Fund) project ªSYNBIOFACTORYº (grant number DPI2014-55276-C5-2-R).Peer reviewe

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    Design of artificial neural oscillatory circuits for the control of lamprey- and salamander-like locomotion using evolutionary algorithms

    Get PDF
    This dissertation investigates the evolutionary design of oscillatory artificial neural networks for the control of animal-like locomotion. It is inspired by the neural organ¬ isation of locomotor circuitries in vertebrates, and explores in particular the control of undulatory swimming and walking. The difficulty with designing such controllers is to find mechanisms which can transform commands concerning the direction and the speed of motion into the multiple rhythmic signals sent to the multiple actuators typically involved in animal-like locomotion. In vertebrates, such control mechanisms are provided by central pattern generators which are neural circuits capable of pro¬ ducing the patterns of oscillations necessary for locomotion without oscillatory input from higher control centres or from sensory feedback. This thesis explores the space of possible neural configurations for the control of undulatory locomotion, and addresses the problem of how biologically plausible neural controllers can be automatically generated.Evolutionary algorithms are used to design connectionist models of central pattern generators for the motion of simulated lampreys and salamanders. This work is inspired by Ekeberg's neuronal and mechanical simulation of the lamprey [Ekeberg 93]. The first part of the thesis consists of developing alternative neural controllers for a similar mechanical simulation. Using a genetic algorithm and an incremental approach, a variety of controllers other than the biological configuration are successfully developed which can control swimming with at least the same efficiency. The same method is then used to generate synaptic weights for a controller which has the observed biological connectivity in order to illustrate how the genetic algorithm could be used for developing neurobiological models. Biologically plausible controllers are evolved which better fit physiological observations than Ekeberg's hand-crafted model. Finally, in collaboration with Jerome Kodjabachian, swimming controllers are designed using a developmental encoding scheme, in which developmental programs are evolved which determine how neurons divide and get connected to each other on a two-dimensional substrate.The second part of this dissertation examines the control of salamander-like swimming and trotting. Salamanders swim like lampreys but, on the ground, they switch to a trotting gait in which the trunk performs a standing wave with the nodes at the girdles. Little is known about the locomotion circuitry of the salamander, but neurobiologists have hypothesised that it is based on a lamprey-like organisation. A mechanical sim¬ ulation of a salamander-like animat is developed, and neural controllers capable of exhibiting the two types of gaits are evolved. The controllers are made of two neural oscillators projecting to the limb motoneurons and to lamprey-like trunk circuitry. By modulating the tonic input applied to the networks, the type of gait, the speed and the direction of motion can be varied.By developing neural controllers for lamprey- and salamander-like locomotion, this thesis provides insights into the biological control of undulatory swimming and walking, and shows how evolutionary algorithms can be used for developing neurobiological models and for generating neural controllers for locomotion. Such a method could potentially be used for designing controllers for swimming or walking robots, for instance
    corecore