3,671 research outputs found

    Processor Enhancements for Media Streaming Applications

    Get PDF
    The development of more processing demanding applications on the Internet (video broadcasting) on one hand and the popularity of recent devices at the user level (digital cameras, wireless videophones, ...) on the other hand introduce challenges at several levels. Today, such devices present processing capabilities and bandwidth settings that are inefficient to manage scalable QoS requirements in a typical media delivery framework. In this paper, we present an impact study of such a scalable data representation optimized for QoS (Matching Pursuit 3D algorithms) on processor architectures to achieve the best performance and power efficiency. A review of state of the art techniques for processor architecture enhancement let us expect promising opportunities from the latest developments in the reconfigurable computing research field. We present here the first design steps of an efficient reconfigurable coprocessor especially designed to cope with future video delivery and multimedia processing requirements. Architecture perspectives are proposed with respect to low development cost constraints, backward compatibilty and easy coprocessor usage using an original strategy based on a hardware/software codesign methodolog

    The effectiveness of the creativity trigger module in achieving higher levels of creative thinking among prospective teachers

    Get PDF
    The unoptimised level of creative thinking is seen as an issue among Semester 8 prospective teachers in Malaysian Teacher-Education Institutes (IPG). This could impede their teaching of creative thinking as one of the four components of 21st century skills in schools. In relation to this, this study sets out to investigate prior creativity levels of IPG prospective teachers and develop the Creativity Trigger Module (CTM) as a training module for enhancing their creativity. The Torrance Tests of Creative Thinking (TTCT) was used to compare the prior creativity levels of four respondent groups and test the effectiveness of the CTM on five dimensions of figural creativity, namely fluency, originality, elaboration, resistance to premature closure, abstractness of titles, and their overall creativity. A two-stage cluster sampling technique identified two IPGs with 68 respondents in the state of Johor namely, IPG-Kampus Tun Hussein Onn, Batu Pahat (IPGKTHO) as the control group site (34 respondents), and IPG- Kampus Temenggong Ibrahim, Johor Bahru (IPGKTI) as the treatment group site (34 respondents). Mathematics (MT) and Design and Technology (RBT) are the only two specialist subject combinations that provided enough sample size at both test sites. A quasi-experimental research design was used and this involved intact classes. Data analysis was carried out as follows: ANOVA, ANCOVA, and Wilcoxon Signed Rank Test analysis for TTCT scores while data analysis based on the NVivo software was used for the focus group interviews. Findings on prior creativity levels showed average or low creativity levels among all 4 test groups with IPGKTHO and RBT options having significantly higher posttest marks as compared to IPGKTI and MT option respectively. The CTM was found to improve significantly respondents’ posttest marks for the treatment group in all the five dimensions of figural creativity and, their overall creativity. Feedback from respondents revealed positive support for the CTM. In conclusion, the prior creativity of IPG prospective teachers was at an unoptimised level before treatment but the CTM has been successfully developed as an effective resource for enhancing the creative thinking levels among IPG prospective teachers

    Interactive Real-Time Embedded Systems Education Infused with Applied Internet Telephony

    Get PDF
    The transition from traditional circuit-switched phone systems to modern packet-based Internet telephony networks demands tools to support Voice over Internet Protocol (VoIP) development. In this paper, we introduce the XinuPhone, an integrated hardware/software approach for educating users about VoIP technology on a real-time embedded platform. We propose modular course topics for design-oriented, hands-on laboratory exercises: filter design, timing, serial communications, interrupts and resource budgeting, network transmission, and system benchmarking. Our open-source software platform encourages development and testing of new CODECs alongside existing standards, unlike similar commercial solutions. Furthermore, the supporting hardware features inexpensive, readily available components designed specifically for educational and research users on a limited budget. The XinuPhone is especially good for experimenting with design trade-offs as well as interactions between real-time software and hardware components

    Efficient Opportunistic Sensing using Mobile Collaborative Platform MOSDEN

    Get PDF
    Mobile devices are rapidly becoming the primary computing device in people's lives. Application delivery platforms like Google Play, Apple App Store have transformed mobile phones into intelligent computing devices by the means of applications that can be downloaded and installed instantly. Many of these applications take advantage of the plethora of sensors installed on the mobile device to deliver enhanced user experience. The sensors on the smartphone provide the opportunity to develop innovative mobile opportunistic sensing applications in many sectors including healthcare, environmental monitoring and transportation. In this paper, we present a collaborative mobile sensing framework namely Mobile Sensor Data EngiNe (MOSDEN) that can operate on smartphones capturing and sharing sensed data between multiple distributed applications and users. MOSDEN follows a component-based design philosophy promoting reuse for easy and quick opportunistic sensing application deployments. MOSDEN separates the application-specific processing from the sensing, storing and sharing. MOSDEN is scalable and requires minimal development effort from the application developer. We have implemented our framework on Android-based mobile platforms and evaluate its performance to validate the feasibility and efficiency of MOSDEN to operate collaboratively in mobile opportunistic sensing applications. Experimental outcomes and lessons learnt conclude the paper

    MOSDEN: A Scalable Mobile Collaborative Platform for Opportunistic Sensing Applications

    Get PDF
    Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data across multiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.Comment: Accepted to be published in Transactions on Collaborative Computing, 2014. arXiv admin note: substantial text overlap with arXiv:1310.405

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    BIBS: A Lecture Webcasting System

    Get PDF
    The Berkeley Internet Broadcasting System (BIBS) is a lecture webcasting system developed and operated by the Berkeley Multimedia Research Center. The system offers live remote viewing and on-demand replay of course lectures using streaming audio and video over the Internet. During the Fall 2000 semester 14 classes were webcast, including several large lower division classes, with a total enrollment of over 4,000 students. Lectures were played over 15,000 times per month during the semester. The primary use of the webcasts is to study for examinations. Students report they watch BIBS lectures because they did not understand material presented in lecture, because they wanted to review what the instructor said about selected topics, because they missed a lecture, and/or because they had difficulty understanding the speaker (e.g., non-native English speakers). Analysis of various survey data suggests that more than 50% of the students enrolled in some large classes view lectures and that as many as 75% of the lectures are played by members of the Berkeley community. Faculty attitudes vary about the virtues of lecture webcasting. Some question the use of this technology while others believe it is a valuable aid to education. Further study is required to accurately assess the pedagogical impact that lecture webcasts have on student learning

    Interactive digital art

    Get PDF
    In this paper, we present DNArt in general, our work in DNArt’s lab including a detailed presentation of the first artwork that has come out of our lab in September 2011, entitled “ENCOUNTERS #3”, and the use of DNArt for digital art conservation. Research into the use of DNArt for digital art conservation is currently conducted by the Netherlands Institute for Media art (Nederlands Instituut voor Mediakunst, NIMk). The paper describes this research and presents preliminary results. At the end, it will offer the reader the possibility to participate in DNArt’s development

    DLP+TLP processors for the next generation of media workloads

    Get PDF
    Future media workloads will require about two levels of magnitude the performance achieved by current general purpose processors. High uni-threaded performance will be needed to accomplish real-time constraints together with huge computational throughput, as next generation of media workloads will be eminently multithreaded (MPEG-4/MPEG-7). In order to fulfil the challenge of providing both good uni-threaded performance and throughput, we propose to join the simultaneous multithreading execution paradigm (SMT) together with the ability to execute media-oriented streaming /spl mu/-SIMD instructions. This paper evaluates the performance of two different aggressive SMT processors: one with conventional /spl mu/-SIMD extensions (such as MMX) and one with longer streaming vector /spl mu/-SIMD extensions. We will show that future media workloads are, in fact, dominated by the scalar performance. The combination of SMT plus streaming vector /spl mu/-SIMD helps alleviate the performance bottleneck of the integer unit. SMT allowsPeer ReviewedPostprint (published version
    • …
    corecore