30,072 research outputs found

    xDBTagger: Explainable Natural Language Interface to Databases Using Keyword Mappings and Schema Graph

    Full text link
    Translating natural language queries (NLQ) into structured query language (SQL) in interfaces to relational databases is a challenging task that has been widely studied by researchers from both the database and natural language processing communities. Numerous works have been proposed to attack the natural language interfaces to databases (NLIDB) problem either as a conventional pipeline-based or an end-to-end deep-learning-based solution. Nevertheless, regardless of the approach preferred, such solutions exhibit black-box nature, which makes it difficult for potential users targeted by these systems to comprehend the decisions made to produce the translated SQL. To this end, we propose xDBTagger, an explainable hybrid translation pipeline that explains the decisions made along the way to the user both textually and visually. We also evaluate xDBTagger quantitatively in three real-world relational databases. The evaluation results indicate that in addition to being fully interpretable, xDBTagger is effective in terms of accuracy and translates the queries more efficiently compared to other state-of-the-art pipeline-based systems up to 10000 times.Comment: 20 pages, 6 figures. This work is the extended version of arXiv:2101.04226 that appeared in PVLDB'2

    The relational XQuery puzzle: a look-back on the pieces found so far

    Get PDF
    Given the tremendous versatility of relational database implementations toward awide range of database problems, it seems only natural to consider them as back-ends for XML data processing. Yet, the assumptions behind the language XQuery are considerably different to those in traditional RDBMSs. The underlying data model is a tree, data and results carry an intrinsic order, queries are described using explicit iteration and, after all, problems are everything else but regular. Solving the relational XQuery puzzle, therefore, has challenged anumber of research groups over the past years. The purpose of this article is to summarize and assess some of the results that have been obtained during this period to solve the puzzle. Our main focus is on the Pathfinder XQuery compiler, afull reference implementation of apurely relational XQuery processor. As we dissect its components, we relate them to other work in the field and also point to open problems and limitations in the context of relational XQuery processin

    Knowledge Rich Natural Language Queries over Structured Biological Databases

    Full text link
    Increasingly, keyword, natural language and NoSQL queries are being used for information retrieval from traditional as well as non-traditional databases such as web, document, image, GIS, legal, and health databases. While their popularity are undeniable for obvious reasons, their engineering is far from simple. In most part, semantics and intent preserving mapping of a well understood natural language query expressed over a structured database schema to a structured query language is still a difficult task, and research to tame the complexity is intense. In this paper, we propose a multi-level knowledge-based middleware to facilitate such mappings that separate the conceptual level from the physical level. We augment these multi-level abstractions with a concept reasoner and a query strategy engine to dynamically link arbitrary natural language querying to well defined structured queries. We demonstrate the feasibility of our approach by presenting a Datalog based prototype system, called BioSmart, that can compute responses to arbitrary natural language queries over arbitrary databases once a syntactic classification of the natural language query is made
    corecore