4,706 research outputs found

    Multiple viewpoint modelling framework enabling integrated product-process design

    Get PDF
    Nowadays, companies have to cope with numerous constraints at organisational and technical levels in order to improve their competitiveness edges such as productivity, efficiency, and flexibility. Integrated product-process design becomes more and more complex to manage because of increasingly customized products related to various stakeholders and concerns geographically distributed. It is still represents a huge challenge, especially in the early phases of product development process. In such a context, the management of information within integrated product-process design highlights needs in a consistent engineering model that enables product lifecycle management (PLM) integration. The paper presents a novel multiple viewpoint framework called multiple viewpoint assembly oriented, considering product design and assembly process domains in the broader context of concurrent engineering and PLM. The proposed framework describes the consistency, the propagation of information change, and mechanisms of views generation among the product lifecycle stages in order to support assembly oriented design philosophy. A new modelling language called System Modeling Language is used to describe the proposed model from a systems engineering point of view. The implementation of the model in a Web-service called PEGASUS as an application for PLM systems is describe

    Integrated product relationships management : a model to enable concurrent product design and assembly sequence planning

    Get PDF
    The paper describes a novel approach to product relationships management in the context of concurrent engineering and product lifecycle management (PLM). Current industrial practices in product data management and manufacturing process management systems require better efficiency, flexibility, and sensitivity in managing product information at various levels of abstraction throughout its lifecycle. The aim of the proposed work is to manage vital yet complex and inherent product relationship information to enable concurrent product design and assembly sequence planning. Indeed, the definition of the product with its assembly sequence requires the management and the understanding of the numerous product relationships, ensuring consistency between the product and its components. This main objective stresses the relational design paradigm by focusing on product relationships along its lifecycle. This paper gives the detailed description of the background and models which highlight the need for a more efficient PLM approach. The proposed theoretical approach is then described in detail. A separate paper will focus on the implementation of the proposed approach in a PLM-based application, and an in-depth case study to evaluate the implementation of the novel approach will also be given

    Development of an Extended Product Lifecycle Management through Service Oriented Architecture.

    Get PDF
    Organised by: Cranfield UniversityThe aim of this work is to define new business opportunities through the concept of Extended Product Lifecycle Management (ExtPLM), analysing its potential implementation within a Service Oriented Architecture. ExtPLM merges the concepts of Extended Product, Avatar and PLM. It aims at allowing a closer interaction between enterprises and their customers, who are integrated in all phases of the life cycle, creating new technical functionalities and services, improving both the practical (e.g. improving usage, improving safety, allowing predictive maintenance) and the emotional side (e.g. extreme customization) of the product.Mori Seiki – The Machine Tool Company; BAE Systems; S4T – Support Service Solutions: Strategy and Transitio

    Practitioner requirements for integrated Knowledge-Based Engineering in Product Lifecycle Management.

    No full text
    The effective management of knowledge as capital is considered essential to the success of engineering product/service systems. As Knowledge Management (KM) and Product Lifecycle Management (PLM) practice gain industrial adoption, the question of functional overlaps between both the approaches becomes evident. This article explores the interoperability between PLM and Knowledge-Based Engineering (KBE) as a strategy for engineering KM. The opinion of key KBE/PLM practitioners are systematically captured and analysed. A set of ranked business functionalities to be fulfiled by the KBE/PLM systems integration is elicited. The article provides insights for the researchers and the practitioners playing both the user and development roles on the future needs for knowledge systems based on PLM

    Applying model-driven paradigm: CALIPSOneo experience

    Get PDF
    Model-Driven Engineering paradigm is being used by the research community in the last years, obtaining suitable results. However, there are few practical experiences in the enterprise field. This paper presents the use of this paradigm in an aeronautical PLM project named CALIPSOneo currently under development in Airbus. In this context, NDT methodology was adapted as methodology in order to be used by the development team. The paper presents this process and the results that we are getting from the project. Besides, some relevant learned lessons from the trenches are concluded.Ministerio de Ciencia e InnovaciĂłn TIN2010-20057-C03-02Junta de AndalucĂ­a TIC-578

    Framework for Product Lifecycle Management integration in Small and Medium Enterprises networks

    Get PDF
    In order to improve the performance of extended enterprises, Small and Medium Enterprises (SMEs) must be integrated into the extended networks. This integration must be carried out on several levels which are mastered by the Product Lifecycle Management (PLM). But, PLM is underdeveloped in SMEs mainly because of the difficulties in implementing information systems. This paper aims to propose a modeling framework to facilitate the implementation of PLM systems in SMEs. Our approach proposes a generic model for the creation of processes and data models. These models are explained, based on the scope and framework of the modeling, in order to highlight the improvements provided

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    Requirements analysis in the implementation of integrated PLM, ERP and CAD systems

    Get PDF
    Product Lifecycle Management (PLM) system implementation is a major investment when the technology is used in manufacturing companies. This paper provides an analysis of the requirements for the integration of PLM systems with Enterprise Resource Planning (ERP) systems incorporating the design aspects of Computer Aided Design and Manufacturing (CAD/CAM) within the product development process. PLM implementation deals with various existing product data and information generated over years both from CAD and ERP systems. Data integration is very challenging and has important impact on future decisions while creating new processes. The information management plays very important role not only in PLM implementation but also in the way this will be used in future production. Therefore it is very important to analyse how product information is transferred to PLM system. It also need to be investigated that what, when and how the data will flow from and to PLM systems
    • 

    corecore