24,492 research outputs found

    Measuring Process Modelling Success

    Get PDF
    Process-modelling has seen widespread acceptance, par ticularly on large IT-enabled Business Process Reengineering projects. It is applied, as a process design and management technique, across all life-cycle phases of a system. While there has been much research on aspects of process-modelling, little attention has focused on post-hoc evaluation of process-modelling success. This paper addresses this gap, and presents a process-modelling success measurement (PMS) framework, which includes the dimensions: process-model quality; model use; user satisfaction; and process modelling impact. Measurement items for each dimension are also suggested

    Fine-grain process modelling

    Get PDF
    In this paper, we propose the use of fine-grain process modelling as an aid to software development. We suggest the use of two levels of granularity, one at the level of the individual developer and another at the level of the representation scheme used by that developer. The advantages of modelling the software development process at these two levels, we argue, include respectively: (1) the production of models that better reflect actual development processes because they are oriented towards the actors who enact them, and (2) models that are vehicles for providing guidance because they may be expressed in terms of the actual representation schemes employed by those actors. We suggest that our previously published approach of using multiple “ViewPoints” to model software development participants, the perspectives that they hold, the representation schemes that they deploy and the process models that they maintain, is one way of supporting the fine-grain modelling we advocate. We point to some simple, tool-based experiments we have performed that support our proposition

    The business process modelling ontology

    Get PDF
    In this paper we describe the Business Process Modelling Ontology (BPMO), which is part of an approach to modelling business processes at the semantic level, integrating knowledge about the organisational context, workflow activities and Semantic Web Services. We harness knowledge representation and reasoning techniques so that business process workflows can: be exposed and shared through semantic descriptions; refer to semantically annotated data and services; incorporate heterogeneous data though semantic mappings; and be queried using a reasoner or inference engine. In this paper we describe our approach and evaluate BPMO through a use case

    Welding process modelling and control

    Get PDF
    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control

    Process modelling of a PVC production plant

    Get PDF
    This paper presents the modelling of a Polyvinyl Chloride (PVC) resins manufacturing process with batch process simulator, SuperPro Designer V6.0. The simulation model has been developed based on the operating condition of a local PVC manufacturing plant. As the polymerisation process is carried out in batch operation mode, efforts have been made to document the scheduling details of each unit operation and results are presented in the Gantt chart. Cycle time for a complete polymerisation process is determined to be 14.28 hours. The model also reveals that approximately 17 batches of polymerisation reaction can be processed per day, which tallies the real operation of the PVC manufacturing plant

    Software process modelling as relationships between tasks

    Get PDF
    Systematic formulation of software process models is currently a challenging problem in software engineering. We present an approach to define models covering the phases of specification, design, implementation and testing of software systems in the component programming framework, taking into account non-functional aspects of software (efficiency, etc.), automatic reusability of implementations in systems and also prototyping techniques involving both specifications and implementations. Our proposal relies on the identification of a catalogue of tasks that appear during these phases which satisfy some relationships concerning their order of execution. A software process model can be defined as the addition of more relationships over these tasks using a simple, modular process language. We have developed also a formal definition of correctness of a software development with respect to a software process model, based on the formulation of models as graphs.Peer ReviewedPostprint (published version

    Process modelling for Space Station experiments

    Get PDF
    Examined here is the sensitivity of a variety of space experiments to residual accelerations. In all the cases discussed the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion, or fluid motion must be suppressed or eliminated. In the latter case, the experiments are sensitive to steady and low frequency accelerations. For experiments such as the directional solidification of melts with two or more components, determination of the velocity response alone is insufficient to assess the sensitivity. The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt-crystal interface. As far as the response to transient disturbances is concerned, the sensitivity is determined by both the magnitude and frequency of the acceleration and the characteristic momentum and solute diffusion times. The microgravity environment, a numerical analysis of low gravity tolerance of the Bridgman-Stockbarger technique, and modeling crystal growth by physical vapor transport in closed ampoules are discussed

    Process modelling for materials preparation experiments

    Get PDF
    The main goals of the research under this grant consist of the development of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular, for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of the tasks described in detail in the original proposal, two remain to be worked on: (1) development of a spectral code for moving boundary problems; and (2) diffusivity measurements on concentrated and supersaturated TGS solutions. Progress made during this seventh half-year period is reported
    • …
    corecore