334,609 research outputs found

    Designing an Open Virtual Factory of Small and Medium-sized Enterprises for Industrial Engineering Education

    Get PDF
    Curriculum of Industrial Engineering program must accomplish the requirement that graduates have the ability to design, develop, implement, and improve integrated system that include people, materials, equipment and energy. However, it is not easy to implement a curriculum that fosters such competencies. One of the strategies to achieve that is using an innovative learning media, so that the problem-based learning (PBL) can be accustomed. In this paper, we design a web-based enterprise resources planning. It is aimed to capture the real problem of small and medium-sized enterprises (SMEs) in bottled drinking water industries. The integrated system can be illustrated as ERP application that designed by using free open source software (FOSS). This research aimed to utilize the application to improve teaching methods in IE education. The result of the research can be used to improve the competencies of IE students, especially the abilities to identify, formulate, and solve the activities of the business process improvement in SMEs. Keywords Industrial engineering education, FOSS, innovative learning media, problem-based learnin

    E-Learning For Software Engineering: A Case Study On Teaching Information Systems Online Group Project With Extreme Programming

    Get PDF
    This paper reports the experience gained in software engineering group work within the framework of a fourteen week master’s level graduate course on information systems development. Teams of three to five members developed web-based application systems using the Distributed eXtreme Programming (XP) methodology. A case study is proposed to understand the issues encountered by students during the software development process and to determine the impact of XP methodology as well as team members’ geographical distribution on students’ overall performance. We suggest that teaching an information systems group project online with agile methodology (i.e. distributed XP) brings several issues to be considered before and during the development process. This study points out these issues, particularly those regarding student teams’ communication, coordination, and collaboration practices. Improvement of these issues in the future would help educators develop more effective education settings and help students enhance their performance

    A Web-Based University Courses Syllabi Generator

    Get PDF
    To improve university students learning experience and in the quest for ABET accreditation, it is crucial to have clear and consistent syllabi encompassing the course outcomes and their relationship to the overall program outcomes for all offered courses.  This paper aims to present the automation of syllabi for engineering programs by introducing a web-based software application for course syllabus generation. The application has been developed using the best practices in educational theories and is fully aligned with ABET guidelines for program accreditation.   It streamlines the process of writing syllabi and ensures compliance and conformity for all courses offered within a program.  In addition, such automation reduces human errors, improves the student learning experience, reduces paper and printing costs and provides an environmental friendly alternative. Keywords: ABET, engineering education, student learning, syllabi generation, quality improvement

    Navigating The Leading Edge: A Prototype Curriculum for Software Systems Management

    Get PDF
    This article presents a meaningful and advantageous new direction for information technology education, embodying principles for systematically optimizing the functioning of the business. Our curriculum was built on the thesis that every aspect of software systems management can be understood and described as a component of four universal, highly correlated behaviors: abstraction, product creation, product verification and validation, and process optimization. Given this, our model curriculum was structured to provide the maximum exposure to current best practice in six thematic areas, which taken together as an integrated set, makes-up the attributes that differentiate us from the other computer disciplines: Abstraction: understanding and description of the problem space Design: models for framing artifact to meet criteria 3, 4, 5, and 6 Process Engineering: application of large models such as IEEE 12207 Organizational Control Systems: SQA and configuration management Evaluation with Measurement: with an emphasis on testing and metrics Construction: professional programming languages with emphasis on reusability Our teaching strategy approaches this as a hierarchy of similar activities. In every course we require the student to define and implement all three interfaces and be able to clearly communicate this as a logically consistent model before working out the details of the solution. The focus of all understanding is top-down from the information interface. Our curriculum centers on the application of software engineering standards (such as those promulgated by IEEE) and the software process improvement, or quality standards (such as those promulgated by SEI and ISO) under the assumption that this embodies the common body of knowledge and state of best practice in software production and management. The practical realization of this is an integration of the large subject areas of: software engineering (methods, models and criteria), process and product quality management (software quality assurance and metrics), software project management (work decomposition, planning, sizing and estimating), and software configuration management. Reconciliation of project and configuration management is accomplished by cross-referencing the problems, tools, notations and solutions (through explicit identification, authorization and validation procedures). As a side agenda, we have also stressed the need for re-engineering the vast number of software products currently on the shelves. This model plus germane simulated real-world experience introduces all of the relevant principles to the student within the (currently understood) framework. It allows them to develop and internalize their own comprehensive understanding and formulate a personal model of the disciplinary body of knowledge

    ICSEA 2022: the seventeenth international conference on software engineering advances

    Get PDF
    The Seventeenth International Conference on Software Engineering Advances (ICSEA 2022), held between October 16th and October 20th, 2022, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. Several tracks were proposed to treat the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learned. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. Other advanced aspects are related to on-time practical aspects, such as run-time vulnerability checking, rejuvenation process, updates partial or temporary feature deprecation, software deployment and configuration, and on-line software updates. These aspects trigger implications related to patenting, licensing, engineering education, new ways for software adoption and improvement, and ultimately, to software knowledge management. There are many advanced applications requiring robust, safe, and secure software: disaster recovery applications, vehicular systems, biomedical-related software, biometrics related software, mission critical software, E-health related software, crisis-situation software. These applications require appropriate software engineering techniques, metrics and formalisms, such as, software reuse, appropriate software quality metrics, composition and integration, consistency checking, model checking, provers and reasoning. The nature of research in software varies slightly with the specific discipline researchers work in, yet there is much common ground and room for a sharing of best practice, frameworks, tools, languages and methodologies. Despite the number of experts we have available, little work is done at the meta level, that is examining how we go about our research, and how this process can be improved. There are questions related to the choice of programming language, IDEs and documentation styles and standard. Reuse can be of great benefit to research projects yet reuse of prior research projects introduces special problems that need to be mitigated. The research environment is a mix of creativity and systematic approach which leads to a creative tension that needs to be managed or at least monitored. Much of the coding in any university is undertaken by research students or young researchers. Issues of skills training, development and quality control can have significant effects on an entire department. In an industrial research setting, the environment is not quite that of industry as a whole, nor does it follow the pattern set by the university. The unique approaches and issues of industrial research may hold lessons for researchers in other domains. We take here the opportunity to warmly thank all the members of the ICSEA 2022 technical program committee, as well as all the reviewers. The creation of such a high-quality conference program would not have been possible without their involvement. We also kindly thank all the authors who dedicated much of their time and effort to contribute to ICSEA 2022. We truly believe that, thanks to all these efforts, the final conference program consisted of top-quality contributions. We also thank the members of the ICSEA 2022 organizing committee for their help in handling the logistics of this event. We hope that ICSEA 2022 was a successful international forum for the exchange of ideas and results between academia and industry and for the promotion of progress in software engineering advances

    Experimenting with Realism in Software Engineering Team Projects: An Experience Report

    Get PDF
    Over Several years, we observed that our students were sceptical of Software Engineering practices, because we did not convey the experience and demands of production quality software development. Assessment focused on features delivered, rather than imposing responsibility for longer term `technical debt'. Academics acting as 'uncertain' customers were rejected as malevolent and implausible. Student teams composed of novices lacked the benefits of leadership provided by more experienced engineers. To address these shortcomings, real customers were introduced, exposing students to real requirements uncertainty. Flipped classroom teaching was adopted, giving teams one day each week to work on their project in a redesigned laboratory. Software process and quality were emphasised in the course assessment, imposing technical debt. Finally, we introduced a leadership course for senior students, who acted as mentors to the project team students. This paper reports on the experience of these changes, from the perspective of different stakeholders

    Business Process Management Education in Academia: Status, challenges, and Recommendations

    Get PDF
    In response to the growing proliferation of Business Process Management (BPM) in industry and the demand this creates for BPM expertise, universities across the globe are at various stages of incorporating knowledge and skills in their teaching offerings. However, there are still only a handful of institutions that offer specialized education in BPM in a systematic and in-depth manner. This article is based on a global educators’ panel discussion held at the 2009 European Conference on Information Systems in Verona, Italy. The article presents the BPM programs of five universities from Australia, Europe, Africa, and North America, describing the BPM content covered, program and course structures, and challenges and lessons learned. The article also provides a comparative content analysis of BPM education programs illustrating a heterogeneous view of BPM. The examples presented demonstrate how different courses and programs can be developed to meet the educational goals of a university department, program, or school. This article contributes insights on how best to continuously sustain and reshape BPM education to ensure it remains dynamic, responsive, and sustainable in light of the evolving and ever-changing marketplace demands for BPM expertise

    Towards collaborative learning via shared artefacts over the Grid

    Get PDF
    The Web is the most pervasive collaborative technology in widespread use today; and its use to support eLearning has been highly successful. There are many web-based Virtual Learning Environments such as WebCT, FirstClass, and BlackBoard as well as associated web-based Managed Learning Environments. In the future, the Grid promises to provide an extremely powerful infrastructure allowing both learners and teachers to collaborate in various learning contexts and to share learning materials, learning processes, learning systems, and experiences. This position paper addresses the role of support for sharing artefacts in distributed systems such as the Grid. An analogy is made between collaborative software development and collaborative learning with the goal of gaining insights into the requisite support for artefact sharing within the eLearning community
    • …
    corecore