

Simpson, R. and Storer, T. (2017) Experimenting with Realism in Software

Engineering Team Projects: An Experience Report. In: 30th IEEE

Conference on Software Engineering Education and Training (CSEE&T),

Savannah, GA, USA, 7-9 Nov 2017, pp. 87-96.

(doi:10.1109/CSEET.2017.23)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/149818/

Deposited on: 16 October 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/CSEET.2017.23
http://eprints.gla.ac.uk/149818/
http://eprints.gla.ac.uk/

Experimenting with Realism in Software Engineering Team Projects: An Experience
Report

Robbie Simpson and Tim Storer
School of Computing Science

University of Glasgow
18 Lilybank Gardens, Glasgow, G12 8QQ, United Kingdom

Email: r.simpson.3@research.gla.ac.uk, timothy.storer@glasgow.ac.uk

Abstract—Over Several years, we observed that our students
were sceptical of Software Engineering practices, because we
did not convey the experience and demands of production
quality software development. Assessment focused on features
delivered, rather than imposing responsibility for longer term
‘technical debt’. Academics acting as ‘uncertain’ customers
were rejected as malevolent and implausible. Student teams
composed of novices lacked the benefits of leadership provided
by more experienced engineers. To address these shortcomings,
real customers were introduced, exposing students to real
requirements uncertainty. Flipped classroom teaching was
adopted, giving teams one day each week to work on their
project in a redesigned laboratory. Software process and quality
were emphasised in the course assessment, imposing technical
debt. Finally, we introduced a leadership course for senior
students, who acted as mentors to the project team students.
This paper reports on the experience of these changes, from
the perspective of different stakeholders.

Keywords-Real world team projects; Flipped classroom; Ag-
ile methods; Mentoring

I. INTRODUCTION

Many Computing Science programmes incorporate a
Software Engineering Team Project course (TP), as this
is a requirement of degree accreditation schemes, such as
the British Computer Society [1]. At Glasgow, the course
is undertaken in the third year of the four year BSc degree
programme and runs through both semesters between October
and March of the academic year. Students on the course are
organised into teams of six students. The TP course itself does
not incorporate taught material, but is delivered alongside a
course covering Professional Software Development (PSD)
principles, tools and methods. Over a number of years we
had observed several aspects of the Software Engineering
programme that were unsatisfactory. These observations arose
from a number of sources, including discussions amongst
staff and interview assessments of students during summer
placements. Specifically, we have observed that:

• Students were unconvinced by the relevance of the
material delivered in lectures, particularly with regards
to quality assurance and change management. This
scepticism arose because students knew that the projects
specified for the course were largely ‘artificial’ for which

they would have no responsibility beyond the end of the
academic year. Students were therefore not convinced of
the need for a more rigorous software process, because
they were not exposed to a situation that demanded it.
Further, the document-oriented approach to software
process (RUP) created substantial overhead for the
students, relative to the scale of the project tackled.
This is not a critique of the RUP itself, but rather that
it was not well suited to the short life-cycle, small
team structure of the TP. This problem was further
exacerbated by students returning from industry, where
they were increasingly likely to experience the practice
of agile methods.

• The typical structure of Computing Science assessments
means that students are unfamiliar with situations in
which requirements are uncertain and subject to change.
Good practice dictates that students are provided with
very clear specifications for coursework submissions,
linked to intended learning outcomes (ILO). For ex-
ample, an educator who wishes to check that students
understand the mechanics of a linked list can specify
coursework in which the students implement the data
structure. Submissions are then assessed against the
precise specification. In a TP, students are deliberately
not presented with a precise specification of what to
implement, since understanding the complexities of
and methods for requirements elicitation, capture and
negotiation is one of the key learning outcomes. In
the TP at Glasgow, the course coordinators acted as
customers and simulated requirements uncertainty with
deliberate vagueness and contradiction. However, the
students found this behaviour unconvincing and rejected
the ILO. Students knew that the proposed project is not
‘real’ and are not convinced by the synthetic uncertainty
of their ‘customers’. We have, for example, found that
students sometimes ascribe the intended vagueness in
the specifications for projects to poor preparation by
the course coordinators. In one instance of infuriated
exasperation a student demanded that we ‘just tell us
what you want’.

• Assessment focused on product features delivered, rather

than product quality, or software process. Assessing a
team’s software process may be difficult, without on-
going monitoring of team activity, which may be time
consuming. Instead, the assessment criteria assumes
that teams which follow a rigorous software process
will deliver better quality software in the final product.
However, although assessment criteria refers to product
quality as ‘well-designed, functional, ..., maintainable,...’,
there is no further specific guidance on how to assess this.
Consequently, assessment was based on the features that
are readily identifiable in the delivered product. Students
reasonably respond to this focus by delivering workable
prototypes, however unmaintainable. This is unfortu-
nate, because developing prototype quality software
is not evidence of achievement of the course’s ILOs.
Student experiences in other courses, where the learning
outcomes focus on demonstration of understanding of
a concept within Computing Science, rather than the
delivery of longer term maintainable code reinforces
this bias. Consequently, we observed that students leave
the programme lacking a sense of responsibility for the
‘technical debt’ in their code.

• There was a lack of time officially allocated to the
team project course in the students’ timetable. The TP
and PSD courses between them accounted for one third
of the credits available in the academic year, but only
four hours per week were specifically allocated to them.
Student teams were expected to arrange weekly meetings
with an academic supervisor to review progress and
agree objectives, as well as organise their own internal
meetings and develop the project. However, no time was
specifically allocated for this. In practice, many students
tended to focus on smaller items of coursework with
short term deadlines, neglecting the project itself.

• There is no opportunity to learn from mistakes, or benefit
from the experience of others. We have found that
there is a commonly held belief amongst colleagues
that students learn the most from their failures; and that
the existing design of the TP reflected this assumption.
Students were given a theoretical introduction to a
wide range of Software Engineering practices and
tools, but little guidance on the practical selection and
application of these tools, or incentive and time to
practice them. Student teams were composed randomly
from a population with little collective prior experience
of Software Engineering (within a team or otherwise)
and consequently lacked leadership or direction during
the early phases of the work. We felt that this structure
exacerbated the ‘Storming’ phase of team formation
[2]. Students were in effect being set up to fail in the
expectation that they would learn from this experience.
However, we found that this meant many students
became extremely anxious for their grades and resorted
to ‘thrashing’, rather than taking the time to reflect on

their failures and adapt their behaviours accordingly.

We anticipate that the above critique of the TP is recognis-
able in many Computing Science programmes. In this paper,
we report on our experience of implementing a package
of enhancements to the Software Engineering programme
over several years to address these deficiencies. At their
core, these changes are guided by the desire to create a more
realistic environment for the practice of Software Engineering
methods. Specifically, we sought to create project teams that
work on real world problems with a real world customer; that
work in a realistic Software Engineering environment, where
they can benefit from the space and time to develop and
practice modern agile methods and tools; and where novice
student teams can benefit directly from the experiences of
more experienced mentors.

A number of the changes implemented may be recognis-
able in other institutions and indeed, several are inspired
by practices reported elsewhere, or from which we are
aware by anecdote. However, all the changes made required
customisation to fit within the constraints operating at
Glasgow and we believe that when taken collectively, the
package of measures represent significant innovation. Further,
as Bull and Whittle [3] note, there is relatively little evidence
of evaluation or even experience reports of innovations in
Software Studios or Project Based Learning; and although
we have found relevant literature discussing some aspects of
the changes we have made, we have found little evidence
of others. A further contribution of this paper, therefore, is
to place the approach we adopted into the peer reviewed
literature in a structured form to encourage further discussion.

This paper is structured as follows. Section II describes
the changes made to the Software Engineering curriculum in
the University since 2014. Section III presents the results of
our interviews with different participants in the programme,
including team project students, student mentors, industrial
mentors and team project customers. Section IV discusses
the implications of the changes made to the programme and
reflects on links to related work. Finally, Section V assesses
the wider implications and identifies the next steps for our
programme of research and programme changes.

II. CHANGES MADE TO THE PROGRAMME AND
RATIONALE

This section summarises the changes we have made to
the delivery of the Software Engineering topics within the
Computing Science Curriculum at the University of Glasgow.
The changes comprise alterations to two courses: the Third
Year Team Projects (TP) and an associated Professional
Software Development (PSD) course; and the introduction
of a new course in the Final Year, Advanced Software
Engineering Practices (ASEP). The changes were introduced
gradually since 2014 and, as discussed later in Section V,
are part of a continuing reform of the curriculum.

A. Agile Software Project Structure

Students had previously been introduced to a wide range
of software project models, including Waterfall, Rational and
agile methods. A decision was made to focus primarily on
agile software project structure and practices and encourage
this through the assessment model for the course. Teaching
materials were adjusted appropriately, emphasising topics
selected from several agile methods, including agile software
project planning, change management, user stories, test
and behaviour driven development, software inspections,
continuous integration and agile process improvement.

Practical alterations included structuring the projects into
six one month iterations, with progress demonstrations and
further requirements gathering from customers at the begin-
ning of each month. Student teams are required to employ
version control, issue tracking and continuous integration
systems. Further, each team is required to undertake a
retrospective at the end of each iteration to reflect on their
software process and identify opportunities for improvement.

Rationale: Agile software development methods such as
Extreme Programming (XP) and Scrum are recognised as
being suitable for small teams of between 4 and 12 developers
[4]. Further, agile methods, while requiring considerable
discipline to apply well, are easier to introduce gradually into
a team’s practice [5] and are accompanied by less overhead,
such as documentation maintenance. We anticipated that
students would find these methods easier to adopt and
practice, as well as recognise the benefits more quickly.

B. Flipped Classroom Delivery

We converted all the lectures in the PSD course into online
materials, comprising short videos, slides, notes and links to
supplementary reading. Students are required to cover this
material in advance of taught contact time, which is spent in
the laboratory working on project activities and in discussions
with academic staff and demonstrators. Students are given a
weekly online quiz with a small amount of credit each week
to encourage engagement with the material. By consolidating
all the time allocated into lectures, it was possible to allocate
the whole of one working day for team project activities. A
preexisting arrangement that allowed students 24 hour access
to the laboratories was also retained, facilitating flexible
working outwith the timetabled laboratory hours. We also
re-designed the laboratory space for the course to be more
suitable for co-located team work. Figure 1 shows the design
of the new space, with students grouped into clusters with
space for 6 students in each cluster. The space is equipped
with overhead projectors on each wall, as well as extensive
whiteboard wall space to facilitate design discussions and
other project meetings. Each team table is also equipped
with its own retractable whiteboard.

Rationale: Lectures are a time consuming and inefficient
means of delivering information, and encourage rote memo-
risation of information over understanding of concepts [6].

Figure 1: The re-designed teaching space for the Team Project

In our own experience of delivering the course, we have
found that a typical one hour lecture could be condensed
into approximately 15 minutes of video footage, since time
is not spent on setup problems, answering questions from the
audience and emphasising key points. Eliminating lectures
increased the amount of time that could be allocated for
in-laboratory activities and allows students dedicated time
to make progress on their software project. This reduces the
risk that students will not themselves allocate sufficient time
each week to the project, by making the time that should
be used for it explicit in the timetable. Grouping this time
together in a single day allows student teams the space to
concentrate on developing the project and making progress
with less distraction from other lectures or coursework.

C. Real world project customer for every team

The School of Computing Science has extensive links
with external organisations. We advertised the opportunity
for organisations to participate in the TP as customers,
prioritising responses in order from charities, startup and
SME businesses, the public sector, other university business
units and lastly larger private organisations. Each customer
was asked to create an initial project specification, with
the advice that projects should address a real concern or
challenge for their organisation. We advised that a good
project specification should be relatively self-contained and
not directly affect day-to-day operations at the organisation
(i.e. project failure should not have critical consequences
for the organisation). In the last iteration of the course, we
selected 13 customers, with each customer working with two
student teams.

Each customer was required to meet with the student team
for six whole days during the course of the project. These
Customer Days combined formal assessments of the teams’
progress demonstrations and further requirements gathering
with opportunities to informally discuss requirements with

customers. Beyond this, customers were free to structure
their interactions with the project teams as they wished and
we encouraged teams and customers to decide their own
communication arrangements. Customers could also contact
student teams more frequently or make arrangements for
other activities such as site visits, if they wished.

Rationale: We anticipated that interaction with real world
customers would enhance student team motivation to par-
ticipate in the project. We have found in assessments of
placements, that students often note the additional incentive
of working on real world projects with real customers as a
factor in ensuring project success. While we are unable to
offer compensation to student teams for their project work,
the real world customer ensures that student teams work on
software where there is real demand. Further, by working with
real world customers, students would be forced to recognise
the necessity of engaging in negotiations over requirements,
rather than depending on the course coordinators to eventually
reveal them. This also means that students would need
to monitor project costs and make adjustments to project
schedules to ensure that the intended goals for the project
remained realistic.

D. Emphasise technical debt in assessment

Several changes were made to the assessment model. First,
every team received formative assessment of their software
process at the end of each iteration, focusing on change
management, quality assurance, project planning and process
improvement. The assessment was informed by evidence
gathered from their software project tools. Assessments were
directed by practical questions concerning the maturity of
the team’s software process. For example, commit messages
in the team’s version control tool and tickets in the issue
tracking tool were inspected for usefulness against a checklist.
Only the final assessment of software process was included
in the grade in the course, providing the student teams
with the opportunity to improve gradually over the course
of the project. Second, the team’s interactions with their
project customer were assessed, with marks available for
the organisation and delivery of a progress demonstration
and the negotiation of further requirements and priorities
for the subsequent iteration. Each team was allocated 30
minutes to hold a formal meeting with their customer during
a Customer Day. Marks were assigned for the professionalism
of the demonstration, requiring the teams to describe progress
against agreed objectives. Teams could be equally credited
if they described a successful iteration or if they explained
delays encountered and their causes. Credit was also available
for negotiating and documenting new requirements. Third,
the mark scheme for the final dissertation was redesigned
as an experience report, requiring the team to reflect on the
impact of the course on their thinking.

Rationale: Previous iterations of the course did not empha-
sise long term responsibility for the delivered software. By

transferring the weight of the assessment to the demonstration
of Software Engineering practices and reflection on this
activity, we believed that we could compensate for the product
centric thinking adopted by our students in their approach
to coursework. As a consequence of these changes, only
20% of the total credit for the course was concerned with
the final delivered software product and this included an
assessment of software quality. Assessment of the teams’
software process (25%), performance when demonstrating
their progress and gathering requirements (30%), and for
the final reflective dissertation (25%) accounted for the rest,
incentivising students to practice more disciplined software
development throughout the project.

E. Final Year Mentors for Student Teams

One challenge we have encountered in flipped classroom
teaching with large classes is being able to deploy sufficient
numbers of trained tutors to support students during the
laboratory sessions. This is particularly challenging when
laboratories extend across a full day. To address this, we
began employing final year (FY) undergraduate students as
tutors. One risk of this approach is that the FY students
lacked the mentoring skills and confidence to engage with
the third year teams and would be reluctant to intervene with
teams or make recommendations, even when asked directly
for advice.

To address this, we developed a FY mentoring and
leadership course, Advanced Software Engineering Practices
(ASEP). The course was developed in collaboration with
an industry partner, the JP Morgan Glasgow Technology
Centre. The course has two broad themes: an introduction
to mentoring and leadership theory and skills, including,
team psychology, process control theory and its application
to agile project management; and a selection of current
and advanced topics in Software Engineering, including
Design Studios; Test Driven Development and Continuous
Integration. Although some of these topics are delivered in
the Third Year PSD course, there was a desire to spend
more time revisiting them and extending the depth to which
the topics are covered. The course is delivered in a series
of focused workshops in which mentors from JP Morgan
participated.

The coursework for the ASEP course is also designed
to encourage the FY students to have the confidence to
intervene with project teams. Mentors were required to
monitor the student teams during their demonstrating hours
in the laboratory, in order to identify emerging problems in
the team software process. To facilitate this, the mentors were
also tasked with providing the formative feedback discussed
in Section II-D. The mentors then designed and implemented
a software process improvement activity (PIA) to address the
problem, in collaboration with the project team. Assessment
focused on the students’ planning, preparation, monitoring

and critical assessment of the process improvement, rather
than whether it fundamentally succeeded or failed.

Rationale: The FY students had completed the TP course
the previous year and undertaken summer or full year
internships before starting their final year. Our intention
was that the FY students would ‘evangelise’ the third years
on the relevance of the Software Engineering practices that
we taught, as well as deliver other topics based on their
own experience, and be a more convincing emissary than
academic staff. Providing the FY mentors with the skills and
confidence needed to act as a mentors would enhance this
experience and prepare the students for leadership roles in
their future careers.

III. INTERVIEWS

Semi-structured interviews were conducted (Ethics Ap-
proval Number 300160104) with participants in all the
different roles in the courses. This method was selected
because we wanted to assess the qualitative impact of the
changes implemented in the courses from the perspective
of the participants. We decided against a quantitative pre-
and post- assessment because the restructuring had occurred
gradually over a number of years, and because the assessment
model itself had been changed significantly. Open invitations
were distributed via email requesting participation in the
study in May 2017, approximately one month after the end
of teaching in the 2016 academic year. Four categories of
participants were interviewed: three Third Year TP students;
five final year student mentors; five project customers
and all the industry mentors from JP Morgan. We also
considered interviewing the lecturers who coordinated the
course. However, as two are co-authors of this paper and the
others are close colleagues we felt this would be artificial.
An initial set of questions were developed for each category
of participant [7]. The questions focused on the perceived
benefits and limitations of the course from the perspectives
of the different participants, but also on how they perceived
other participants. Students and project customers were
all interviewed individually. The industry mentors from JP
Morgan were interviewed collectively, as this was the most
convenient arrangement. Summaries of the discussions with
each category of interviewee are presented below.

A. Third Year Students

Three Third Year students were interviewed (L3A, L3B and
L3C). L3A liked the structure of the course overall, describing
the project as ‘very realistic’, and the style of development
matched their expectations of commercial software. L3A
remarked on the fast pace of the course, saying ‘there
was always something coming up’ and referring to it as
a ‘permanent hackathon’. They stated that they found the
combined workload of the PSD and TP courses burdensome
and as a consequence prioritised the project. L3B observed
that the part time nature of the project did reduce the realism.

L3C stated that they learned about the practice of change
management in larger teams and the importance of team
communication and division/estimation of tasks.

Students reported spending a variable amount of time in the
laboratory. L3A and L3C’s teams met and worked collectively
for most of the allocated laboratory day. L3A’s team would
also work sporadically on the project at other times during
the week. L3C also reported using pair programming and
standups in their team. L3B’s team spent only 1-2 hours in
the laboratory per week initially, but this increased in the
second semester. L3B’s team also worked more individually,
often only meeting for 15 minutes a week as a team. They
adopted a flexible team structure with interchangeable roles,
and did work together on an ad-hoc basis. L3A and L3C
reported that the laboratory space was busy, but that the layout
and facilities were good for teamwork, when available. This
meant that L3C’s team often ended up working from home.

All three interviewed students said they developed a close
working relationship with their customer. L3A’s team had
weekly customer meetings and used Slack at other times.
L3B reported making visits to the customer’s office and
communicating via email. L3C’s team used Google Hangouts
for weekly meetings. L3A’s project is now live with their
customer. Both L3B and L3C reported that their customer
was happy with the result of their project as a ‘proof of
concept’, but it is not certain whether it will be used in
production.

L3B and L3C stated that they enjoyed the flipped classroom
model and made use of the videos to prepare for exams.
However, L3B also liked conventional lectures as they provide
an opportunity to ask questions, but would have also like
more tailored guidance on how to apply the online material to
the specifics of their project. All three liked the quizzes, but
one (L3C) thought they were too easy. L3A noted that they
would have preferred more information on team dynamics,
such as people management or conflict resolution, rather
purely on the technical side of project management. Also,
some of the advanced topics covered in semester 2, such as
aspect oriented engineering, were not obviously useful. L3A
also noted that the explicit assessment model influenced their
behaviour.

All three L3 students stated that their team did not make
much use of the FY mentors, as they didn’t feel the need
for help. However, L3A did find the formative feedback
provided by the mentors useful for identifying areas of
improvement. L3C reported taking part in a PIA and felt that
was a ‘good experience’. The mentors lead them through
a ‘richer’ retrospective adopting particular structures, which
the team then used later.

B. Final Year Mentors

Five final year students were interviewed (FYA - FYE).
All five FY students liked the course and particularly enjoyed
the mentoring coursework aspects and the emphasis on

coursework in the assessment. FYB reported liking the
lightweight nature of the assessment and found the diaries
useful. FYD and FYE stated that it was interesting to see a
software development project from a different point of view:
as observers not participants.

All five students agreed that an internship was a useful
experience before acting as a mentor. FYC believed that the
internship was useful because they understood why good
Software Engineering practices were needed and could better
explain this to the students. FYC reported that students
asked about his experience in industry and about internships.
FYD and FYE learned a lot about team dynamics and agile
methods during their internship, which was especially useful
when designing PIA exercises.

FYA and FYB, FYD and FYE reported feeling of mixed
use, whereas FYC felt that students generally accepted
his advice. Sometimes it was difficult to tell if students
needed help, so they felt like they might be intruding on
their work. FYB noted that sometimes they couldn’t help
the teams with the particular technologies they were using.
FYB, FYD and FYE reported feeling most useful during the
middle of the course when the teams began asking questions
concerning project management. FYD and FYE suggested
that briefing sessions on PSD material would be useful each
week to make them aware of key issues in the laboratory and
likely questions. FYA stated that some students struggled to
assimilate the advice they provided and sometimes wanted
the mentors to solve the problem for them. FYB also reported
difficulty in convincing L3 students of the merits of their
advice, observing that the students often just wanted to start
coding and ‘hack it all together’. However, this improved
gradually during the year. FYB, FYD and FYE suggested that
the mentors should have more training and guidance upfront
before they start working with the teams. FYA, FYD and FYE
stated that the formative process assessment with a specific
team was useful in helping to develop team-mentor relations.
FYC suggested that being allocated to mentor a specific team
throughout the course would have been preferable for this
reason.

FYA conducted a PIA focused on change management.
They felt that the student team was receptive to this,
even though they had concerns that the L3 team wouldn’t
engage. They felt the coursework was ‘well balanced’ and
‘open enough’ to be interesting. FYB focused their PIA
on mini-retrospectives, encouraging the team to perform a
retrospective every week. This worked well at first, but the
team eventually became bored by it. They learned that the
retrospective should be done, but less frequently. In contrast,
FYC did not implement a successful PIA (on using Kanban
for project management), reporting that the student team
were not motivated to engage. FYC noted that the team were
all joint honours students and so were doing a proportionally
smaller scale project compared to single honours teams. FYD
and FYE found the process of writing a plan and getting

feedback for a PIA helpful as it gave them the opportunity
to improve. However, they would prefer more time before
implementing the warm up exercise to identify problems
more clearly.

C. Project Customers

Five customers were interviewed, CA, CB, CC from the
2016 iteration of the course, CD from the 2015 iteration and
CE who participated in both iterations. Only CD and CE
had prior experience of working with students on projects
and all customers reported considerable uncertainty at the
outset regarding the likely capabilities of the students, the
expectations of themselves as customers and the likely
outcomes of the collaboration. However, all the customers
spoke positively about the experience.

CA now has a usable working application for managing
lone workers, which they believe distinguishes them from
other charities and described the experience as ‘enlightening’
and ‘worthwhile’. CB did not adopt their projects into
production, but have achieved a useful proof of concept.
CB did, however, use the course to give their more junior
staff some experience of project management. CB stated
that they ‘would have loved to’ take some students on for
internships, but were not able to do so because of timing.
CC also used the projects to prototype ideas and were
able to explore ‘important research ideas’ with one team
that completely exceeded their expectations and could be
quickly re-implemented. CC stated that they were keen to
take part in the team projects again. Two of CD’s teams
delivered workable systems. One for data visualisation and
the other various physical devices for monitoring engagement
in exhibits. Both these projects are still in use, and have
been updated with new data. CD reported that seeing other
customer presentations was enjoyable and that the course had
also initiated a collaboration with another of the customers.
CE stated that they chose projects that were non-critical for
the first iteration they participated in, in order to determine
what the students were capable of. CE said they were ‘pretty
happy’ with the experience, and had obtained ‘two very
useful products’.

All five customers spoke positively about the performance
of the students overall, although they did recognise differ-
ences between the teams that were allocated to them. CA
stated that they were impressed by the knowledge, ability
and work ethic of the students and felt that the students were
better than some professional tech companies, particularly in
their ability to ‘empathise’ with the customers’ requirements.
Both CA and CD reported that one of their teams deviated
from the requirements to focus on aspects of the project
which interested them. CB stated that one of their teams was
very good, while the other was less so. CB were surprised that
students had no specific knowledge of Apple technologies
and had also not been exposed to protocol concepts (this is
taught during another third year course).

CA, CB and CC felt the students benefited from working
with less technical clients, which required them to work on
their communication, project management and requirements
gathering skills. CB also noted that students initially lacked
project management skills and learned about prioritisation
and managing the customers expectations. CB suggested
that there should be more focus in the taught course on
communication skills and team dynamics, as this would help
the team manage customer expectations. CC found that all of
their students struggled with designing in the abstract. They
felt they needed actual data to look at before system design
could proceed. CE stated that due to the nature of his project,
students learnt a lot about information governance and data
protection, given the importance of data confidentiality.

All the customers reported that the commitment was found
to be quite lightweight. CA and CC engaged in relatively little
interaction with the students beyond the core requirements.
CA had one extra meeting a small number of exchanges
via email and reported that this was felt to be a very
minimal commitment. CC also stated that interactions with
the student teams was quite undemanding, having only two
extra meetings at their offices and using slack and email at
other times. CD felt that the monthly meetings were about
right and stated that one of their teams stuck to the set
meetings, whilst the other was far more engaged, making
several trips to the customer’s site. CB held meetings with
teams every two weeks, stating ‘we created our own structure’.
CE tried using video-conferencing, but this never worked
effectively due to technical problems.

Several customers would have liked more guidance on
how to interact with the students and how to arrange projects.
Some customers ran the same project with all their teams,
while others had different projects. Both CC and CD reported
that making the initial ‘pitch’ to the students intimidating. CD
stated it was ‘difficult but valuable’. This was not something
they were used to and was not particularly enjoyable to do, but
it forced them to think and express clearly the aims of their
company. CC also asked for more guidance on intellectual
property sharing. CD stated that one of their teams lacked
confidence and was ‘terrified” by meetings with them. Both
CC and CD suggested that this might be improved if there
had been more time at the start of the course for them to
get to know the customer and build a rapport. CE stated
that the formal customer meetings could feel a little rushed.
They would prefer to have longer meetings (45 minutes to
1 hour) in a quieter and more private venue. CB and CE
found the end of the project lacked organisation and subject
to time constraints, meaning that handovers of projects were
haphazard. CB suggested that it would be useful to have a
final customer meeting after the presentations to wrap up or
handover the project. CE suggested ending the development
aspects of the projects slightly earlier to allow time for a
handover. CD had acquired funding to take on one student
over the summer to carry the project on, but this came through

too late to take the student on.

D. Industry Mentors

The industry mentors had relatively little past experience
in teaching before the course. A number of their expectations
about the course were challenged. In particular, they were
surprised by the decline in attendance in the lectures and
workshops and discovered the students didn’t know each
other as well as they had expected. This made establishing
a rapport with the students more difficult. The mentors also
found that the students were familiar with the mechanics
of agile methods and that this caused some overlap with
material taught in the PSD course. However, they found they
were not aware of the deeper reasons why agile methods
are practised in industry. Overall, the mentors were positive
about their personal benefits from taking part in the course.
It was described as ‘rewarding’, and they felt that experience
would benefit them in their future careers. They noted that
students were prepared to challenge them about the content
they were teaching, focusing them to think deeply about the
techniques they were teaching.

There was some discussion of the ‘cultural’ issues regard-
ing the course. For example, the industry mentors believed
some students were deterred by the corporate background of
the mentors, and did not like the idea of working in financial
services. This meant that the students may not have been
convinced by the experience of the mentors if they did not
believe it was representative of the software industry. For
example, the industry mentors reported that students were
surprised by how little greenfield development work actually
occurred in business and attributed this to the nature of the
organisation’s work, rather than the nature of the industry
as a whole. Similarly, it was perceived that that the content
of the course (focusing on techniques for large-scale teams)
might not appeal to students hoping to work in smaller
organisations. However, students eventually understood the
motivation for these techniques, and hence engaged more
effectively with the mentors.

The industry mentors reported on a number of practical
problems with the structure of the ASEP course. The mentors
had difficulty communicating with students outside of lectures
due to corporate IT security policies. The mentors also
recommended swapping the ordering of the week, so that
the lecture happened first to prepare students, followed by
the practical workshop. Like some of the FY students, the
industry mentors were not sure that the skills and techniques
taught in ASEP were linked to the students’ roles as mentors
. Further, the FY students did not have opportunities to apply
all of the methods and practices shown to them during the
ASEP course. One suggestion was to implement additional
coursework to demonstrate these advanced concepts, such as
a team project running for the length of the course.

IV. DISCUSSION AND COMPARISON WITH RELATED
WORK

The challenge of providing realistic experiences of Soft-
ware Engineering has been addressed by a number of different
authors. Dawson [8] explored the challenge of introducing
realism through playing ‘dirty tricks’ on students. While
we have independently experimented with these techniques,
we have found that a limiting factor is plausibility. In our
experience students simply find this behaviour unconvincing,
believing it to be unrealistically malevolent, and are therefore
resistant to the intended learning.

Many of the initial changes to the courses at Glasgow
were inspired by the work on Software Engineering Studios
by Bull et al. [9], which itself is based on older work on
Design Studios in software development [10]. The size of
the TP class at Glasgow (approximately 150 versus 20) and
the need to use the allocated space for other laboratory
work was a constraining factor in implementing a number
of desirable aspects of the approach adopted at Lancaster.
Desktop PCs were provided for each desk with large monitors,
which hinders collaborative activities. The size of the class
meant it was also not possible to allocate dedicated space to
each team that they could reconfigure as desired. Students
were encouraged to make use of other spaces around the
University to conduct work, if desired, and several teams
used other laboratories, or meeting rooms in the library and
elsewhere, rather than spending all their time in the dedicated
laboratory. Some student teams also grouped themselves into
bays to facilitate collaboration between desks. Carter and
Hundhausen [11] presented a review of several experiences
of implementing studio based learning in Computing Science.
Of the small sample studied, Carter and Hundhausen noted
that like our own work, the principle motivation was to
enhance student exposure to realistic industrial circumstances
and practices.

Garlan et al. [12], Boehm et al. [13], Hayes [14],Buckley
et al. [15] and Suri [16] all reported on their experiences
running project courses with real world customers. Unlike
in our own course, in most cases, students in the same
cohort worked on the same project [12, 15, 16, 13]. However,
the similarities with our own experiences are striking. All
the authors found that students were motivated by the
opportunity to work on projects that had real world impact
and reported examples of projects providing substantial
benefits to the customer. Boehm et al. [13] reported scalability
as a significant challenge for the provision of continuous
assessment. Our experience suggests that employing senior
students as mentors can be useful in scaling formative
assessment activities. Buckley et al. [15] also found that
students left the course more convinced by the difficulties of
requirements elicitation. Hayes [14] reported that their project
led to the exploration of further development opportunities
and grant applications.

Other experiments with Software Team Projects have been
reported. Favela and Peña Mora [17] reported their experience
in teaching global, distributed Software Engineering practices
in a team project. Students from two different countries
were organised into a project which required collaboration
throughout the software life-cycle and were provided with
coordination tools to assist with this process. Favela and
Peña Mora found that team distribution exacerbated the
challenges during team formation, with causes including
language and cultural differences between the institutions.
Coppit and Haddox-Schatz [18] took an alternative approach
to increasing the realism of a Team Project, with all 30
students in a class working in a single project organisation.
Coppit and Haddox-Schatz imposed some structure on the
project by formally allocating roles such as project managers
and technical leads, but otherwise allowed the students
to self organise. As in our own experience, Coppit and
Haddox-Schatz used more experienced students for leadership
roles. Overall, the authors suggest the experiment was a
success, with the scale of the project imposing little additional
workload and enhancing the student’s understanding of
communication challenges across large distributed teams.

Several authors have emphasised the importance of re-
flection as an effective enhancement of learning during the
practice of Software Engineering, based on Schon [19]’s ideas.
Moore and Potts [20] observed that the goal of educators
is not just to produce software professionals who know
about techniques, but also ‘have good judgement about
when to apply them’. Many of the practices advocated
by Bull and Whittle [21] were also implemented in our
own approach, including the use of staff as mentors rather
than teachers, continuous presentations and facilitation of
group discussions and peer critique. We also went further,
by explicitly introducing a formal team retrospective at the
end of each iteration of the project. Many of our students
found the conduct of the retrospective difficult, preferring
to use it for project planning rather than identifying and
remedying fundamental process problems. It was therefore
encouraging that so many of the FY mentors recognised this
and chose to guide the software teams through the conduct
of a retrospective as their process improvement coursework.

Hazzan [22] discussed the application of reflective practice
to software design and architecture reviews, relating this to
the physical architecture studios. Several of the students
in the ASEP course experimented with applying coaching
techniques to design processes with student teams and
these were often successful in solving the team’s design
problems. The case study dissertation was also designed
to encourage students to reflect on their experience in
designing and implementing software, although in hindsight,
this reflection may come too late in the course process and
could be enhanced through discussion of content with course
coordinators and student mentors.

V. CONCLUSIONS

This paper has presented our experiences of implement-
ing a substantial collection of changes in the Software
Engineering programme at the University of Glasgow. The
changes have resulted in a number of demonstrable successes.
Team project students are motivated by the opportunity to
engage in a project with real world customers and impact
in a more realistic environment. Student mentors welcome
the opportunity to pass on their experience to their more
junior colleagues. Industry mentors enjoyed engaging with
the final year students and passing on their own expertise.
Customers reported that the projects delivered considerable
value for relatively little cost. Finally, the course coordinators
(ourselves and our colleagues) have enjoyed delivering the
programme in its revised form and feel that our teaching is
more effective because of it. Informally, the structure is also
believed to reduce workload, since we are not committed
to lecturing throughout the week and formative assessment
load is shared with the student mentors.

The results of the interviews identified several areas where
the programme requires improvement. The size of the cohort
at Glasgow means that scalability of teaching methods
remains a challenge. Bull et al. [9] identified the importance
of inter-personal relationships and culture in creating an
effective studio based learning environment, so to a certain
extent, it is inevitable that the size of the class will inhibit this.
However, there are a number of further steps that could be
taken, for example, by assigning a set number of teams
to each of the course coordinators and student mentors,
as suggested by the interview participants. Explicit team
building exercises may also be useful in building rapport
between the different participants.

Fostering a sense of collective ownership of the laboratory
space, even with the constraints of the cohort size, would
also be desirable. For example, Bull et al. [9] noted that
some advocates of studios discourage the presence of digital
technology because it inhibits collaboration. In our own
experience, the presence of desktop PCs in the laboratory
inhibits conversations ‘across the table’ and discourages
student interaction. Many of our students work predominantly
on their own laptops, so removing desktop PCs could increase
the room capacity. This could also encourage the use of the
laboratory as a social space in which students are permitted
to eat and drink [23].

Now that the course is established there is a need to
implement mechanisms that develop longer term relationships
with the external organisations who act as customers. Further
research is needed to understand how the different customers
structured their relationships with the student teams and
how these approaches worked in practice. It would be
desirable to be able to supply new customers with guidance
and best practices for engaging with student teams without
constraining the ‘naturalness’ of the relationship. Further,

the handover process at the end of the project needs to be
more formal and incorporated into the assessment model.
As well as instilling the sense of responsibility for the
project in students, this would also ensuring that customers
properly receive the benefit of their engagement in the course.
Alongside the meetings with students, time should also
be allocated to raising awareness amongst the customers
of mechanisms for continuing projects in the longer term,
through student summer internships, follow on final year
dissertation projects and collaborative funding applications.

We are also considering adopting the introduction of
distributed Global Software Engineering experiences into
the course, as described by Favela and Peña Mora [17]. The
School of Computing Science has a cohort of students based
at the Singapore Institute of Technology. These students
follow an identical curriculum to the cohort based on
Glasgow, but are taught by locally recruited staff. Creating
larger, distributed Software Engineering teams of students
across these two sites could have a number of potential
benefits. Customers could present larger scale challenges for
the teams to tackle. Students would experience the complexity
of managing software projects across time zones and semi-
autonomous organisational units. Working collaboratively on
projects would also foster a greater sense of a single cohort
between the Glasgow and Singapore students.

These new directions raise the question as to how far
realism should go in Software Engineering education. If more
realistic development projects are better for students, then
why not dispense with the university environment entirely?
There are a number of steps in this direction in the UK
at least, such as the increasing emphasis and availability
of paid summer and full year internships as part of degree
programmes. The growing Graduate Level Apprenticeships
scheme will also dramatically increase students’ real world
experience. It might be argued that universities should
dispense with project based learning and instead develop
programmes which allow students to spend more time
in the software industry. However, our project customers
welcomed the fact that students were familiar with the
theory of Software Engineering methods, if not their practice.
University environments also provide students with a ‘safe’
space in which they can experiment with different practices
and experience failure without significant consequences.
Further, university programmes provide the space and time
for students to develop as reflective practitioners, and adopt
mechanisms in coursework which encourage this reflection.
The challenge then, for Software Engineering educators, is to
develop environments in universities that are sufficiently real
to be convincing to students, whilst also providing the space
to learn and experiment with the principles and practices
they will need in their careers.

REFERENCES

[1] Guidelines on course accreditation. Information for
universities and colleges, British Computer Society,
June 2015.

[2] B. W. Tuckman, “Developmental sequences in small
groups,” Psychological Bulletin, vol. 63, no. 6, pp. 384–
399, 1965.

[3] C. N. Bull and J. Whittle, “Observations of a soft-
ware engineering studio: Reflecting with the studio
framework,” in 27th IEEE Conference on Software
Engineering Education and Training, CSEE&T 2014,
Klagenfurt, Austria, April 23-25, 2014, A. Bollin,
E. Hochmüller, R. T. Mittermeir, T. Cowling, and
R. LeBlanc, Eds. IEEE, 2014, pp. 74–83.

[4] K. Beck and C. Andres, Extreme Programming Ex-
plained, 2nd ed., ser. XP Series. Addison Wes-
ley/Pearson Education, February 2005.

[5] K. Schwaber and M. Beedle, Agile Software Develop-
ment with SCRUM. Prentice Hall, 2001.

[6] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith,
N. Okoroafor, H. Jordt, and M. P. Wenderoth, “Active
learning increases student performance in science,
engineering, and mathematics,” Proceedings of the
National Academy of Sciences, vol. 111, no. 23, pp.
8410–8415, 2014.

[7] R. Simpson, “Survey instrument,” Available on GitHub
https://github.com/twsswt/Simpson 2017 Team
Based Software Engineering Teaching/releases/tag/
survey-instrument-v1.0, June 2017.

[8] R. Dawson, “Twenty dirty tricks to train software
engineers,” in Proceedings of the 20th International
Conference on Software Engineering, ICSE 2000,
C. Ghezzi, M. Jazayeri, and A. L. Wolf, Eds. Limerick,
Ireland: ACM Press, 2000, pp. 209–218.

[9] C. N. Bull, J. Whittle, and L. Cruickshank, “Studios in
software engineering education: Towards an evaluable
model,” in Proceedings of the 2013 International
Conference on Software Engineering, San Francisco,
CA, USA. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 1063–1072.

[10] J. E. Tomayko, “Teaching software development in
a studio environment,” in Proceedings of the Twenty-
second SIGCSE Technical Symposium on Computer
Science Education, San Antonio, Texas, USA. New
York, NY, USA: ACM, 1991, pp. 300–303.

[11] A. S. Carter and C. D. Hundhausen, “A review of
studio-based learning in computer science,” Journal
of Computer Science in Colleges, vol. 27, no. 1, pp.
105–111, October 2011.

[12] D. Garlan, D. P. Gluch, and J. E. Tomayko, “Agents of
change: Educating software engineering leaders,” IEEE
Computer, vol. 30, no. 11, pp. 59–65, November 1997.

[13] B. Boehm, A. Egyed, D. Port, A. Shah, J. Kwan,

and R. Madachy, “A stakeholder win-win approach
to software engineering education,” Annals of Software
Engineering, vol. 6, pp. 295–321, 1998.

[14] J. H. Hayes, “Energizing software engineering education
through real-world projects as experimental studies,” in
15th Conference on Software Engineering Education
and Training (CSEET’02), 25-27 February 2002, Cov-
ington, Kentucky, USA. IEEE Computer Society, 2002,
pp. 192–206.

[15] M. Buckley, H. Kershner, K. Schindler, C. Alphonce,
and J. Braswell, “Benefits of using socially-relevant
projects in computer science and engineering educa-
tion,” in Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, Norfolk,
Virginia, USA. New York, NY, USA: ACM, 2004, pp.
482–486.

[16] D. Suri, “Providing “real-world” software engineering
experience in an academic setting,” in 37th Annual
Frontiers In Education Conference - Global Engineer-
ing: Knowledge Without Borders, Opportunities Without
Passports, Oct 2007, pp. S4E–15–20.

[17] J. Favela and F. Peña Mora, “An experience in collabo-
rative software engineering education,” IEEE Software,
vol. 18, no. 2, pp. 47–53, March/April 2001.

[18] D. Coppit and J. M. Haddox-Schatz, “Large team
projects in software engineering courses,” in Proceed-
ings of the 36th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE 2005, St. Louis,
Missouri, USA, February 23-27, 2005, W. Dann, T. L.
Naps, P. T. Tymann, and D. Baldwin, Eds. ACM,
2005, pp. 137–141.

[19] D. Schon, The Reflective Practitioner: How Profession-
als Think In Action. Basic Books, September 1984.

[20] M. M. Moore and C. Potts, “Learning by doing: Goals &
experience of two software engineering project courses,”
in Software Engineering Education, 7th SEI CSEE
Conference, San Antonio, Texas, USA, January 5-7,
1994, Proceedings, ser. Lecture Notes in Computer
Science, J. L. Dı́az-Herrera, Ed., vol. 750. Springer,
1994, pp. 151–164.

[21] C. N. Bull and J. Whittle, “Supporting reflective practice
in software engineering education through a studio-
based approach,” IEEE Software, vol. 31, no. 4, pp.
44–50, 2014.

[22] O. Hazzan, “The reflective practitioner perspective in
software engineering education,” The Journal of Systems
and Software, vol. 63, no. 3, pp. 161–171, September
2002.

[23] D. R. Herrick, “Food and drink in computer labs: Why
not?” in Proceedings of the 40th Annual ACM SIGUCCS
Conference on User Services, Memphis, Tennessee, USA.
New York, NY, USA: ACM, 2012, pp. 161–164.

